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Abstract

In the sequence of least prime factors (OEIS A020639), denoted here as LPF,
for each prime there is a periodic sequence of occurrences, or spectrum as we
call it in this paper. In this paper, we explore the symmetries in the spectra of
LPF and how they relate to the distribution of primes. From LPF we derive a
novel prime-counting function that estimates the number of primes between a
prime p and its value squared p2.

Introduction

The sequence of least prime factors (OEIS A020639), denoted here as LPF, is
a mapping from the natural numbers to its least prime factor, or 1 in the case
of 1. For each prime there is a sequence of occurrences in LPF. A prime’s
sequence of occurrences, or spectrum as we call it, is known to be periodic
and symmetric. The period of the spectrum of the n-th prime is equal to the
n-th primorial, i.e. pn#, the product of all primes up to and including the
n-th prime. For proof of these periodicities and symmetries, see Proofs
Regarding Primorial Patterns by Dennis R. Martin, 2006.

In this paper we explore the symmetries in the spectra of LPF, and how these
symmetries relate to the distribution of primes.

The Sequence of Least Prime Factors

The sequence of least prime factors, sequence OEIS A020639, denoted here as
LPF, maps each natural number to the smallest prime that divides that
number without leaving a remainder, or 1 when n = 1. LPF is the sequence
that starts as follows:

1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29,
2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, 3, 2, 53, 2, 5, 2, 3, 2,
59, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, ...
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For each prime there is a set of occurrences in LPF. Such a set of occurrences,
or spectrum, is periodic. For each prime there is a unique repeating pattern
of occurrences. Figure 1 shows conceptually how LPF consists of a repeating
pattern of occurrences per prime. Only a small section of LPF is shown, where
only the 2s and 3s are visibly repeating. A larger section would show how the
following primes also has its own repeating pattern of occurrences.
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Figure 1: LPF and its spectrum per prime

The period of the n-th prime’s spectrum, its spectral period, is the product
of the prime and the spectral period of the previous prime, which is equivalent
to the primorial function pn#. This primorial rate of growth makes it
impossible to study the complete spectra of larger primes. For example, the
spectrum of prime 53, the 16th prime, already has a spectral period of
32589158477190046000. The spectrum of prime 211, the 47th prime, has a
period that spans in the order of 1084. That number is a thousand times more
than the number of electrons in the observable universe. Nevertheless, we can
study the spectra of lower primes, and generalize the results to the higher
primes.

A way to compactly visualize a prime’s spectrum is to show its pattern of
”jumps”, i.e. the distance between consecutive occurrences. Figure 2 shows
the jump pattern for the first spectral period of prime 11. Prime 11 has a
spectral period that spans (2 · 3 · 5 · 7 · 11) = 2310 integers, and contains 48
occurrences. Each blue vertical bar corresponds with one of its 48 occurrences,
and its height corresponds with the distance to its next occurrence. The first
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bar on the left indicates that, after prime 11’s first occurrence, it took 110
integers until its second occurrence, at 112 = 121.
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Figure 2: Jump pattern of prime 11

Notice that the pattern in Figure 2 is mirror symmetric, with the axis of
symmetry halfway along the spectral period. This symmetry is present in the
spectra of all primes. In the next chapter we construct a sieve that generates
LPF.

A Sieve for Constructing the Spectra in LPF

Let us construct LPF using a sieving method, where we add the prime spectra
one-by-one as rows to a table. Whenever a prime spectrum is added, the
fundamental period of the combined spectra, i.e. the width of the table,
increases by a factor equal to the added prime. This primorial rate of growth
ensures that, after each addition of a prime, LPF remains periodic and
symmetric as a whole.

The initial condition is the 2x2 table shown in Figure 3. The top row
represents the natural numbers, which in the initial condition is just 1 and 2.
The second row represents prime 2 and its occurrences. The occurrences are
colored according to their prime, for easy recognition. A letter g is placed
above each column that has no occurrences. The letter g stands for ”gap”,
indicating a gap in the combined spectra. The column of natural number 1
always has a gap because 1 divided by a prime is never a natural number.
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Figure 3: LPF up to prime 2

From here we construct LPF using a recurrence relation, whereby we add the
spectrum of each prime one-by-one at each iteration. The recurrence relation
for adding the next prime is as follows:

1. Find the first natural number greater than 1 that has a gap, i.e. no
occurrence in that column. If there is no gap to be found within the table
(which only happens when iterating from the initial condition), look at
the progression beyond the table. Let this number p be the next prime.

2. Extend the table such that it has p times more columns, revealing that
many more natural numbers.

3. make p− 1 copies of the pattern and append them to the right, all the
way up to the end of the table.

4. Add a new row to the table. This new row represents prime p. Choose
some random available color to represent p.

5. In this row, from left to right, if the cell is a gap and divisible by p, mark
this cell with the chosen color for p. These markings represent the
occurrences of p in LPF.

• This procedure is equivalent to: Assign occurrences to all gaps of
the previous period, including the gap at 1, and then stretch the
positions to the right by a factor p.

6. Add symbols g and S above the columns to indicate gaps and axis of
symmetry, respectively.

Let us apply this recurrence relation to the initial condition. As shown in
Figure 3, the first gap after 1 is at 3. 3 is just outside the table, which only
happens when iterating from prime 2. For all subsequent iterations the first
gap is always inside the table. Next, the number of columns is increased by a
factor of 3, and the block of all prior occurrences is copied 2 times and
appended to the right. Executing the remaining steps of the procedure results
in the table shown in Figure 4.
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Figure 4: LPF up to prime 3

Figure 4 shows the combined spectra of primes 2 and 3. In this state the total
spectral period is 6 integers in length. There are now 2 gaps, one at column 1
and the other at column 5. The symbol S, placed halfway the table, marks the
axis of reflection symmetry, where the pattern of occurrences is the same on
either side of this column (in the modular sense, such that the pattern is
copied indefinitely on either side of the table). The least prime factor beneath
S is always 3. This is because S is halfway the spectral period. The spectral
period of prime p is the product of all the primes up to and including p, such
that when dividing away the 2 the next lowest prime is 3. At any iteration, all
occurrences in LPF, besides the occurrence of 3 at S, come in pairs, mirror
symmetric on either side of S. The same reflective symmetry also holds for the
gaps. The middle column is an axis of symmetry for occurrences and gaps.

The next iteration is shown in Figure 5.

g g g g S g g g g
N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30P

2
3
5

Figure 5: LPF up to prime 5

In Figure 5, notice how all the gap symbols g, except at 1, are above primes.
This is not general, prime 5 is the last iteration where each gap corresponds
with a prime.

In the next iteration, adding the spectrum of prime 7, the spectral period
becomes 7# = 210, and the column of symmetry is at 105. This table is too
wide to show in this paper, but the situation is well known. For example , see
An upper bound in Goldbach’s conjecture, J.M. Deshouillers, A. Granville, W.
Narkiewicz, and C. Pomerance, Math. Comp. 61 (1993), 209–213, a paper
that was covered by the YouTube channel Numberphile in the episode 210 is
VERY Goldbachy . In the table for prime 7, in the right half of the table there
are gaps at composites 121, 143, 169, 187, 209. If we ignore the outer 121 and
209, the corresponding gap pairs are at 89, 67, 41, 23. These are the primes
that do not pair with other primes to sum to 210, exactly as shown in the
video of Numberphile.

5

https://math.dartmouth.edu/~carlp/PDF/paper91.pdf
https://www.youtube.com/watch?v=PEMIxDjSRTQ
https://www.youtube.com/watch?v=PEMIxDjSRTQ


In general, at any iteration, when adding the spectrum of prime pn, the
number of occurrences of pn is equal to the number of gaps in the spectra of
the previous primes. Furthermore, the new number of gaps is equal to the
previous number of gaps, multiplied by pn − 1.

Properties of the Spectra in LPF

The spectral period of prime pn is the product of pn and the spectral period of
its previous prime. The spectral period of the n-th prime pn is equal to the
primorial function pn#.

Example
The spectral period of prime 13 is:

13# = 2 · 3 · 5 · 7 · 11 · 13
= 30030

The spectral periods for the primes from 2 to 31 are listed in Table 1. For the
rest of the sequence, see the primorial numbers OEIS A002110.

Prime pn pn# = Spectral period
2 2
3 6
5 30
7 210
11 2310
13 30030
17 510510
19 9699690
23 223092870
29 6469693230
31 200560490130

Table 1: The spectral periods of the first 11 primes

The number of occurrences of prime pn in its spectral period, denoted here as
Nocc(pn), is equal to the number of gaps in the combined spectra of its
previous primes, denoted here as Ngaps(pn−1).

Nocc(pn) = Ngaps(pn−1) (1)

Ngaps(p) is a function that takes as input prime p, and outputs the number of
gaps in the combined spectra of primes up to and including prime p.
Ngaps(pn) is equal to the number of gaps in the combined spectra of the
primes less than pn, multiplied by pn, minus the number of occurrences of pn.
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Ngaps(pn) =

(
Ngaps(pn−1) · pn

)
−Nocc(pn) (2)

Substituting (4) into (5) yields:

Ngaps(pn) =

(
Ngaps(pn−1) · pn

)
−Ngaps(pn−1) (3)

And:

Ngaps(pn) = Ngaps(pn−1) · (pn − 1) (4)

Which can be written as:

Ngaps(pn) =

q≤n∏
q=1

(pq − 1) (5)

The ratio between the number of gaps in the combined spectra of primes up to
and including prime pn, and the number of occurrences of prime pn, is:

Ngaps(pn)

Nocc(pn)
= pn − 1 (6)

Therefore:

Ngaps(pn) = Nocc(pn) · (pn − 1) (7)

Substituting (10) into (4) yields:

Nocc(pn) = Nocc(pn−1) · (pn−1 − 1) (8)

The number of occurrences per its spectral period for the primes from 2 to 31
are listed in Table 2. The sequence in the Nocc(pn) column corresponds with
OEIS A005867.
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Prime pn Nocc(pn) = Occurrences / period
2 1
3 1
5 2
7 8
11 48
13 480
17 5760
19 92160
23 1658880
29 36495360
31 1021870080

Table 2: The number of occurrences per spectral period for the first 11 primes

Alternatively, somewhat redundant, when n > 1, Nocc(pn) can be written as
follows.

Nocc(p) = pn−1# ·
(
1−

q<p∑
q=prime

Nocc(q)

P!(q)

)
(9)

Having functions for spectral period and number of occurrences per spectral
period, we can calculate the average number of occurrences of prime pn in
LPF, which we call the spectral density of prime pn.

Let Do(pn) be a function that takes as input a prime pn, and outputs the
spectral density of prime pn in LPF, defined as:

Do(pn) =
Nocc(pn)

pn−1
(10)

Examples

Do(2) =
1

2
= 0.5

Do(3) =
1

6
= 0.166666.

Do(5) =
2

30
= 0.066666.

Do(7) =
8

210
= 0.038095.

Do(11) =
48

2310
= 0.020779.

Do(13) =
480

30030
= 0.015984.

Do(17) =
5760

510510
= 0.011282.
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Ngaps(pn) corresponds with sequence OEIS A005867, but shifted by 1 when
compared with Nocc(pn). Table 3 shows how Nocc(pn) and Ngaps(pn) are
related.

Prime pn Nocc(pn) = Ngaps(pn−1) Ngaps(pn) = Nocc(pn) · (pn − 1)
2 1 1
3 1 2
5 2 8
7 8 48
11 48 480
13 480 5760
17 5760 92160
19 92160 1658880
23 1658880 36495360
29 36495360 1021870080
31 1021870080 30656102400

Table 3: The values for Nocc and Ngaps for the first 11 primes

Let Dg(pn) be a function that accepts a prime pn, and outputs the number of
gaps in the combined spectra up to prime pn, per spectral period of pn,
defined as:

Dg(pn) =
Ngaps(pn)

P!(pn)
(11)

Table 4 shows the density of gaps when constructing LPF by adding the
spectra of primes one-by-one.
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Prime pn pn# Ngaps(pn) Dg(pn) =
Ngaps(pn)

pn−1

2 2 1 0.5
3 6 2 0.333.
5 30 8 0.266.
7 210 48 0.228.
11 2310 480 0.207.
13 30030 5760 0.191.
17 510510 92160 0.180.
19 9699690 1658880 0.171.
23 223092870 36495360 0.163.
29 6469693230 1021870080 0.157.
31 200560490130 30656102400 0.152.

Table 4: Values for Dg for the first 11 primes

A gap corresponds with either a prime, a composite, or number 1. Table 5
shows the number of gaps per prime, how many of those gaps correspond with
primes, and how many of those gaps correspond with non-primes (composites
and 1). The sequence in the Prime gaps column corresponds with OEIS
A048862. The sequence in the Non-prime gaps column corresponds with OEIS
A048863.

Prime pn Ngaps(pn) Prime gaps Non-prime gaps

2 1 0 1
3 2 1 1
5 8 7 1
7 48 42 6
11 480 338 142
13 5760 3242 2518
17 92160 42324 49836
19 1658880 646021 1012859
23 36495360 12283522 24211838
29 1021870080 300369786 721500294
31 30656102400 8028642999 22627459401

Table 5: The number of gaps, prime gaps, and non-prime gaps, per spectral
period, per prime.
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Estimating the Number of Primes Between
Prime pn and p2n

In the combined spectra of primes up to prime pn, in the region between pn
and p2n, where the spectral density of pn is zero, the gaps correspond exactly
with all the primes greater than pn and less than p2n. We do not have an exact
formula for the number of gaps in this region, but we know the overall gap
density. We can expect the gap density in this region to be near greater or
equal to the gap density over the period whole pn#, and near less than or
equal to the gap density in the combined spectra of the previous primes over
the period pn−1#. We take the average these densities for our estimate.

Let πlow
pp2 (pn) be a function, which takes as input prime pn, and outputs the

expected number of primes in a region that spans from pn and less than p2n,
based on the gap density of the current prime, defined as:

πlow
pp2 (pn) = p2n · Ngaps(pn)

pn#

= pn · Ngaps(pn)

pn−1#

(12)

Let πup
pp2(pn) be a function, which takes as input prime pn, and outputs the

expected number of primes in a region that spans from pn and less than p2n,
based on the gap density of the previous prime, defined as:

πup
pp2(pn) = p2n · Ngaps(pn−1)

pn−1#
(13)

Our estimation is then the average of πlow
pp2 (pn) and πup

pp2(pn). Let πpp2(pn) be a
function, which takes as input prime pn, and outputs an estimation for the
number of primes greater than pn and less than p2n, defined as:

πpp2(pn) =
πlow
pp2 (pn) + πup

pp2(pn)

2

=
pn · Ngaps(pn)

pn−1#
+ p2n · Ngaps(pn−1)

pn−1#

2

=
pn ·Ngaps(pn) + p2n ·Ngaps(pn−1)

2 · pn−1#

(14)

Which, when expanded, can be written as:
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πpp2(pn) =

pn ·
(∏q≤n

q=1 (pq − 1)

)
+ p2n ·

(∏q<n
q=1 (pq − 1)

)
2 ·

∏q<n
q=1 pq

=
(2p2n − pn) ·

∏q<n
q=1 (pq − 1)

2 ·
∏q<n

q=1 pq

(15)

Expanding this estimation to the whole region starting from 1, as opposed to
starting from pn, we simply use the actual prime counting function π(pn), for
calculating the number of primes up to pn. Let πp2(pn) be a function that
takes as input a prime pn, and outputs an estimate for the number of primes
less than p2n, given in:

πp2(pn) = π(pn) + πpp2(pn)

= π(pn) +
pn ·Ngaps(pn) + p2n ·Ngaps(pn−1)

2 · pn−1#

= π(pn) +
(2p2n − pn) ·

∏q<n
q=1 (pq − 1)

2 ·
∏q<n

q=1 pq

(16)

Where π is the actual prime-counting function. In order to use πp2(pn), one is
required to know all the primes up to pn. Furthermore, πp2(pn) is only defined
for pn being prime. πp2 relates to the prime counting function π as follows:

π(p2n) = πp2(pn) + ϵ (17)

Where pn is any prime, and ϵ is the error in estimation. The distribution of
gaps is smooth at the macro scale, such that we can expect ϵ to be
proportionally low for all pn.

Example
How many primes approximately exist less than 72?

πp2(7) = π(7) +
7 ·Ngaps(7) + 72 ·Ngaps(5)

2 · 5#

= 4 +
7 · 48 + 72 · 8

2 · 30
≈ 16.13

Actual value:
π(49) = 15
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Example
How many primes approximately exist less than 112?

πp2(11) = π(11) +
11 ·Ngaps(11) + 112 ·Ngaps(7)

2 · 7#

= 5 +
11 · 480 + 112 · 48

2 · 210
≈ 31.4

Actual value:
π(121) = 30

Example
How many primes approximately exist less than 132?

πp2(13) = π(13) +
13 ·Ngaps(13) + 132 ·Ngaps(11)

2 · 11#

= 6 +
13 · 5760 + 132 · 480

2 · 2310
≈ 39.76

Actual value:
π(169) = 39

Example
How many primes approximately exist less than 172?

πp2(17) = π(17) +
17 ·Ngaps(17) + 172 ·Ngaps(13)

2 · 13#

= 7 +
17 · 92160 + 172 · 5760

2 · 30030
≈ 60.80

Actual value:
π(289) = 61

Example
How many primes approximately exist less than 192?

πp2(19) = π(19) +
19 ·Ngaps(19) + 192 ·Ngaps(17)

2 · 17#

= 8 +
19 · 1658880 + 192 · 92160

2 · 510510
≈ 71.45

Actual value:
π(361) = 72
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Table 6 and Figure 6 shows the estimates calculated in this study. The values
for pn

ln(pn)
(PNT) are included for comparison. With only a limited number of

estimations to show for, it is too early for a thorough evaluation, but first
impressions show that πp2(pn) follows π(p

2
n) remarkable well. These results

should proportionally scale with pn, because πp2(pn) builds upon knowledge of
pn’s previous primes.

prime pn p2n π(p2n) πp2(pn)
p2
n

ln(p2
n)

7 49 15 16.1 12.6
11 121 30 31.4 25.2
13 169 39 39.8 32.9
17 289 61 60.8 51.0
19 361 72 71.4 61.3
23 529 99 97.5 84.6
29 841 146 145.2 124.9
31 961 162 160.3 139.9

Table 6: Number of primes less than prime squared vs. estimates
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Figure 6: Comparison of prime-counting functions
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Conclusion

We conclude LPF to be a useful tool for studying the distribution of primes.
Much has already been written about these primorial patterns before, there is
nothing new in this paper. This is just an exploratory study. The result for us
is that it sets the scene for further study of primorial patterns, to more deeply
understand the underlying processes that define and generate the primes.
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