
957
2006

006

Qualitative Decision Theory and
Graph Rewriting in an

Adaptive Diary Assistant

Joris Iisselmujdens
studentnr. 1267523

August 2006

Supervisors:
Rineke Verbrugge*
Tim Samshuijzen
referee:
Bart Verheij*

* Artificial Intelligence, University of Groningen, Zemikepark 10, 9747 AN,
(Ironingen, The Netherlands. Email: [jijssel, I.c.verbrugge, b.verheijJai.rug.nI

+ Rockingstone, (len. Foulkesweg 30a, 6703 BS, Wageningen, The Netherlands.
Email: tim@rockjngstone.nl

Kunstmatige Intelligentie
Rijksuniversigeij Groningen

Al

RuG

Rockingstone

9e

Abstract

Developing a multiagent system (MAS) is difficult due to numerous issues. We aim to define
and discuss some of these. The project contains most of the typical phases of MAS
development, from literature study to implementation (testing is beyond the scope of the
project). As a case-study for the development of a multiagent system, we use an adaptive
diary assistant that is run by a team of autonomous agents. Creating a useful application is
only a secondary goal. It is the entire process from literature study to implementation that we
are interested in, not the end product.

The two main techniques used for the development of this diary assistant are
qualitative decision theory and graph rewriting. Qualitative decision theory provides us with a
convenient architecture for the design, whereas graph rewriting is used for implementation.
Besides defining and discussing the issues encountered during MAS development, we also
explore and expand the possibilities of graph rewriting as a programming language for MAS.
Functionality for qualitative decision theory and complex data manipulation is added to the
graphical agent programming environment OutOfBrain.

The project has many goals, but the focus lies with two simple research questions: "How can
Boutilier's QDT architecture be extended to allow for temporal reasoning?" and "Can
Boutilier's QDT architecture, extended with a temporal modality, be integrated into
OutOfBrain?".

QDT can possibly be extended with temporal reasoning by combining it with BDI's
apparatus for handling time series and events. We call this combined architecture QDT+ from
now on. It has three modalities, one for linear preference orderings, one for linear normality
orderings and one for time trees that branch into the future and are linear in the past. This
allows agents to reason about time as well as mental attitudes. We claim that such a
multimodal architecture is necessary for general purpose learning. The design we end up with
leads to the following conclusion. QDT can be extended to allow for temporal reasoning by
combining it with certain parts of BDI. We provide the first steps toward such an architecture.

The second main goal of this project is to implement QDT+ as an integral part of
OutOfBrain. In this endeavour we were only partly successful. The original QDT architecture,
using preferences and normalities, was indeed implemented and it is now part of OutOfBrain.
However, the functionality for handling time and events was not. This is partly due to time
constraints on the project. Despite this deficit, we are tempted to answer our second research
question in a positive way: QDT+ can indeed be implemented to become an integrated part of
OutOfBrain. Although we did not succeed in doing so ourselves, we developed a clear picture
of how one would go about implementing such an architecture.

The project has four secondary goals. They should be viewed as the context for our two main
goals. Also, we use them to solidify the more abstract challenges of analysing issues in MAS
and exploring and extending OutOfBrain. The first of these secondary goals is to create a
useful application using QDT and OutOfBrain. Requirements on new software are extremely
high nowadays and the adaptive diary assistant does not live up to them. Security issues for
example are not dealt with. One's diary should be private and not accessible to other people.
Achieving this is beyond the scope of this project. Besides this issue, many others have to be
dealt with before the application could be called seaworthy. However, we decided that the
diary assistant should never leave the computer-lab. It served its purpose, which was to be a
test-bed to explore and extend QDT and OutOfBrain.

Secondary goal number two is to successfully incorporate agent communication in
order to improve the application's performance and to further our understanding of sociality

3

1

in MAS. The communication standard we use, FIPA-ACL, proved to be highly intuitive and
perfectly capable of modelling fairly complex communication flows. Therefore, we encourage
other researchers and engineers to make use of it. The third context-goal is to develop a
powerful learning method to facilitate user modelling. Again, we aim to improve the diary
assistant with that, but we also desire to expand our own knowledge of the topic. We were
only partly successful in this endeavour. The learning technique used in the application is not
general purpose; it can only operate in a highly constrained, predefined problem space that
fails to impress. The fourth and final secondary goal is to use standards from cognitive
ergonomics to improve the interface of the application. We hardly pursued this goal in
practice, but we did end up with a usable interface thanks to our own insights and
Rockingstone's experience with developing database applications.

Because of our research goals, we choose to make use of a team of agents as opposed to a
single agent. From an engineering point of view, it would be better to use a single agent,
because the system is not distributed in space and henceforth not a true multiagent system. In
the current version of the programming environment, the world, including the agents, is
represented in a single graph. We simulate distributedness by posing constraints on the
agents' scope of access and control over the environment. They need to work together, since
each member has unique capabilities.

To successfully implement the BDI components as well, one would have to develop a
way to store the history of the world. This would result in not one, but a whole series of
OutOfBrain graphs, one for each time step. Each one is a world that can contain anything
from first order sentences to complex statements, combining temporal operators with mental
attitudes. This is something for potential future work.

Another possible topic for future studies is the general purpose learning method we
mentioned. It would require a module that extracts logical formulas from raw input, coming
from the real world, an experimental setting, a simulation or a database. Needless to say, this
is an unsolved problem and many people are working on it. A learning method for QDT+
would have to transform histories of percepts to formulas containing normalities and
preferences, combined with temporal operators.

We believe that MAS will play a central role in the future world of diary-keeping. The
best approach is to have a single agent represent his user instead of having an entire team of
agents per user. We envision a company where everybody caries a PDA that acts as a personal
secretary. After a single button-press by the chairman of the board, a meeting can be
scheduled that fits everybody's appointments and preferences as much as possible. The
personal secretaries negotiate and form alliances in order to satisfy (or rather satisfice) the
desires of their masters.

4

I

Table of contents

Acknowledgements 7

Preface 8

Legal notice 8

List of Figures 9
List of Tables 9

1 Introduction 10

1.1 Project motivations 10

1.2 Project goals 12

1.3 Applied techniques 13

1.3.1 Qualitative decision theory 14

1.3.2 Graph rewriting and OutOfBrain 14

1.3.3 Agent communication 15

1.3.4 User modelling 15

1.3.5 Interface design 16

2 Literature on qualitative decision theory 17

2.1 Some history on decision theory 18

2.2 Motivations for using qualitative methods 19

2.3 QDT logic 20
2.3.1 Introduction to QDT 20
2.3.2 The logic CO 22
2.3.3 The logic QDT 24
2.3.4 Properties of QDT 25
2.3.5 Knowledge based systems (KBS) 28

2.4 BDI logic 29
2.4.1 Simple BDI example 30
2.4.2 Formal definitions of BDI's logic and model 31

2.4.3 The BOlD architecture 33

2.4.4 Collective intentions 35

2.5 Combining QDT and BDI 35

3 Literature on graph rewriting and other topics 38
3.1 Graph rewriting and OutOiBrain 38

3.1.1 Introduction to graph rewriting 39
3.1.2 Variations in graph rewriting mechanisms 39
3.1.3 Choosing a rewrite mechanism 42
3.1.4 Coloured Petri nets 43
3.1.6 Introduction to the OutOfBrain system 46
3.1.7 Relating OutOfBrain to other graph rewriting systems and Petri nets 48

3.3 User modelling 50
3.4 Interface design 51

3.4.1 Control components 51

3.4.2 Display components 51

4 Design 52
4.1 Introduction to QDT+ 52
4.2 Applying the QDT+ model to a diary assistant 53

5

4.2.1 The agents and their environment 53
4.2.2 Reasoning about the past 54
4.2.3 Cooperation strategies 56

4.3 Applying the QDT+ logic to a worked example 56
4.3.1 Example: the umbrella problem 57
4.3.2 Possible worlds and their expected utility 57
4.3.3 Summation over possible outcomes 59
4.3.4 Rule priority 60
4.3.5 Some thoughts on qualitativity and complex formulas 61

4.4 Designing the adaptive diary assistant 61

4.4.1 Preview of the diary assistant's functionality 62
4.4.2 Overview of methods 64
4.4.3 Overview of data 66

4.5 Methods for communication in a diary assistant 69
4.5.1 Communication during planning 70
4.5.2 Communication during distance-matrix maintenance 71

4.6 Methods for learning in a diary assistant 72
4.7 Interface design 74

5 Implementation 75
5.1 Design reconsideration 75
5.2 Process overview 77
5.3 Some rewrite rules explained 83
5.4 Using preferences 87
5.5 Test report 89

6 Discussion and conclusions 93
6.1 Evaluation 93

6.1 .1 Goal evaluation 93
6.1.2 Results 94
6.1.3 Reasons for design reconsideration 96

6.2 Conclusions 97
6.3 Future work 99

6.3.1 Improvements to QDT+ 100
6.3.2 Improvements to OutOfBrain 101
6.3.3 A network of personal digital assistants (PDA's) 102

References 103
Appendix A: OutOfBrain manual 106
Appendix B: Overview of todo-agent and user-agent 153
Appendix C: host graph 156

6

Acknowledgements

I would like to thank Rineke Verbrugge for her excellent supervision. During our frequent
meetings, we had some very inspiring discussions and I received an abundance of valuable
comments on my thesis from her. Furthermore, my thanks go out to Tim Samshuijzen, the
man behind OutOfBrain. It was a privilege to be part of the development of this new
programming environment. Also, I would like to thank him for the many brainstorm sessions
we had, in which theory and practice came together quite well. The entire crew at
Rockingstone also deserves my thanks. I had a wonderful time in Wageningen and I will not
forget you. Also, thanks to Bart Verheij for being the referee of this thesis. Finally, thanks to
Mieke Iisselmuiden and Eva Jorritsma for their care and support.

7

Preface

This project is a joint effort by Artificial Intelligence at the University of Groningen and
Rockingstone Robotics B.V. It serves as a graduation project for the Master-'Artificial
Intelligence. Furthermore, it is a trial for OutOfBrain, the visual programming environment
currently under development at Rockingstone.

The Artificial Intelligence department of the University of Groningen is known for its
diversity and interdisciplinary character. The four main streams of science practiced there are
autonomous and perceptive systems, multiagent systems, cognitive modelling and language,
sound and cognition. The department has two main goals. One is to study cognition in all its
versatility. The other is to engineer useful, intelligent devices. History tells us that a healths
cross-pollination is possible between these two goals. The department will continue to strive
for this goal in the future.

Rockingstone is a company that consists of three branches: Rockingstone IT,
Rockingstone Trading and Rockingstone Robotics. The IT branch specializes in database
applications. Their flagship is ILAB, a database system for antique books that is used all over
the world. Rockingstone Trading is a wholesale dealer in robotic toys and gadget. Since these
two branches are quite profitable, the robotics branch can afford to have an long term,
innovative strategy. OutOfBrain is the first product emerging from Rockingstone Robotics.

There are four people involved in the project. The general task allocation can be
described as follows. ions lisselmuiden is responsible for the theoretical aspects of
development, whereas Tim Samshuijzen largely takes care of the practical complement
thereof. In reality, the border between theory and practice is not that strict, ions takes care of
a substantial part of the implementation and Tim performed many theoretical tasks as well.
Rineke Verbrugge's tasks consist mostly of supervision and guidance. Finally, Bart Verheij is
the referee of this Master's thesis.

The literature study required for this project, is carried out by ions lisselmuiden,
under the guidance of Rineke Verbrugge. The design of OutOiBrain's qualitative decision
module as well as the design of the adaptive diary assistant are done by ions lJsselmuiden
and Tim Samshuijzen, again guided by Rineke Verbrugge. Implementing the adaptive diary
assistant in OutOfBrain is also a joint effort by ions lisselmuiden and Tim Samshuijzen. The
programming environment OutOfBrain is a creation of Tim Sanishuijzen. Joris Usselmuiden
is the author of this Master's thesis, supervised and guided by Rineke Verbrugge.

OutOfBrain manual: Appendix A
OutOfBrain website: www.outolbrain.com

Legal notice

The ideas and concepts presented in this document that are directly related to OutOfBrain are
protected by international copyright laws. The unique use of run-time graph rewriting in
combination with integrated agents has not yet been patented. This document is to be treated
as an international publication, and hence the ideas and concepts appearing in it may not be
patented by any other organisation at a later stage. OutOfBrain software is not shareware or
freeware. OutOiBrain may not be used or distributed without either a licence or written
consent obtained from Rockingstone IT B.V.

8

List of Figures

1.1 Simple OutOfB rain rewrite rule 15

2.1 Scheme for deliberation and means-end-reasoning 17
2.2 Example preference ordering (drive-rain-umbrella) 21

2.3 Example BDI model (coin-toss game) 30
2.4 Deliberation and means-end-reasoning in BOlD 34
3.1 Graph rewriting ontology 40
3.2 The packet world 45
3.3 OutOfBrain ontology 47
4.1 The diary assistant's seven components 55
4.2 QDT example (overcast-rain-umbrella) 58
4.3 Preview of the diary-agent's functionality 63
4.4 Three agents, a blackboard and an interface 64
4.5 The classes Item and Message 67
4.6 Communication during planning 70
4.7 Communication during distance-matrix maintenance 72
4.8 Interface screenshot 74
5.1 Root of the diary-agent 77
5.2 Diary-agent branch 1: calendar maintenance 78
5.3 Pseudo-code equivalent to diary-agent branch 1 78
5.4 Diary-agent branch 2: suggestion generation 79
5.5 Diary-agent branch 3: type-tree update 82
5.6 Diary-agent branch 4: user-energy update 83

5.7 Snapshot of OutOfBrain code: user-agent's root 86
5.8 Todo-agent's preferences 87
5.9 User-agent's preferences 88
5.10 Source code of two preferences 89
B.! Todo-agent 153
B.2 User-agent's root 153
B.3 User-agent branch 1: select best suggestion 154
B.4 User-agent branch 2: retrieve a distance 154
B.5 User-agent branch 3: retrieve attribute values 154
B.6 User-agent branch 4: update user-energy 155
B.7 User-agent branch 5: update type-tree 155
C.! Example todo-item 156
C.2 Example do-item 157
C.3 Example message 157
C.4 Example distance-matrix 158

C.5 Example type-tree 159
C.6 Example user-energy 160

List of Tables
4.1 Normality ranks for the overcast-rain-umbrella example 58
4.2 Preference ranks for the overcast-rain-umbrella example 58
4.3 Expected utility ranks for the overcast-rain-umbrella example 59
4.4 Expected utility ranks for the augmented overcast-rain-umbrella example 60
5.1 The do-items from the test 90
5.2 The todo-items from the test 90

9

.,

1 Introduction
People in the twenty-first century are busy. Sometimes it is hard to keep track of all one's
appointments and obligations. Electronic diaries on personal digital assistants (PDA's) are
quite popular nowadays and this trend will probably persist. Our aim is to develop an adaptive
diary assistant that offers a bit more than existing electronic diaries. In this system, we
incorporate a variety of different techniques: qualitative decision theory, graph rewriting,
agent communication, user modelling and interface design. This adaptive diary assistant
serves as a test-bed for the agent programming environment OutOfBrain combined with a
qualitative decision architecture.

This Master's thesis consists of six Chapters. The first one gives general information
about the project and provides the reader with some insight into our motivations, goals and
applied techniques. Chapter 2 covers the studies that inspired our qualitative decision
architecture. Chapter 3 treats some literature and our own insights on graph rewriting, agent
communication, user modelling and interface design. Chapter 4 explains our own model and
logic (derived from literature) as well as the design for the adaptive diary assistant. The fifth
Chapter presents the implementation of this model and logic in the programming environment
OutOfBrain and the application we build in that programming environment. Finally, Chapter
6 sheds some light on our conclusions, the evaluation of our goals and ideas for future
research. The Appendices provide extra information on the programming environment
OutOfBrain. Appendix A is the current version of the OutOfBrain manual, Appendix B is an
overview of the diary assistant's implementation and fmally, Appendix C sheds some light on
the host graph the agents have to operate.

The present Chapter provides the reader with an overview of the motivations, goals
and applied techniques of the project. Section 1.1 shows why the project is relevant to
artificial intelligence and the field of multiagent systems (MAS). In Section 1.2, our goals are
formulated and Section 1.3 gives an overview of the techniques we use.

1.1 Project motivations

The last fifteen years or so, multiagent systems (MAS) have received ever increasing attention
from both science and business. In science, MAS already has an established role in the field
of modelling and simulation. When mimicking biological agents it is a straightforward choice
to use software agents or robots. A system consisting of more than one biological agent
satisfies the demands that make the use of MAS sensible. In such a system, there is
cooperation and/or competition, agents can have different goals, and knowledge is distributed
among them. The scientific community is interested in the study of agents for two reasons.
First, it helps us to better understand the behaviour and mental states of biological agents such
as humans. Besides artificial intelligence, the studies of biology, psychology, philosophy and
language are the main players in this quest. Second, it can aid the field of computer science in

10

the development of distributed systems and convenient programming metaphors. These goals
do not contradict each other; in many studies both of them are pursued.

Analogously, one can distinguish between two approaches to the development of a
MAS. Some researchers start with studying biological agents, formalize their properties and
implement them in a simplified simulation. These researchers are concerned with biological
plausibility. Others start with studying computational systems like programming languages
and logic and try to create agents from there. These people are interested in formal properties
like soundness, completeness and tractability. Again, a combination of these approaches is
quite common, leading to biologically plausible agents that make use of some of the most
powerful tools in computer science. In the process of creation it is often a good idea to take
nature as an example. In many cases, evolution has much better solutions than we can come
up with ourselves.

MAS has not had a wide influence on practical applications yet [Luck et al. 2005,
Wooldridge 2002]. Only a very narrow part of the software spectrum actually uses multiagent
systems'. MAS is simply not useful in most applications, because these applications do not
have distributed knowledge, differing goals and cooperation or competition. We try to build a
multiagent system that has at least some of these characteristics. In the meantime, we aim to
improve the agent programming environment OutOfBrain.

The ALICE research group of the Artificial Intelligence department at the University
of Groningen (RuG) has been studying multiagent systems for years. They are especially
interested in the study of social structures, in particular teams of agents, societies of agents
and competitive settings like Robocup. We hope that the ALICE research group can benefit
from this project. In particular, we believe that our work will shed some light on the practical
application of a multiagent team, since we create a team of agents that has the collective
intention to help the user maintain his or her diary. We refer to [Dunin-Keplicz and
Verbrugge 2002] for a formal explanation of collective intentions.

There is an increasing desire for computer programs with realistic and clearly visible
intelligence. Good examples of realistic, visible intelligence are the chatbots that have been
created in the fourth quarter of the twentieth century (e.g. the award winning ALICE
chatbot2). We try to reach such intelligence through a combination of a diverse set of
techniques: qualitative decision theory, graph rewriting, agent communication, user modelling
and interface design. None of these techniques is in itself new or particularly innovative. It is
the combination of all of them that makes this project unique. We expect that by choosing
such a wide variety of techniques, we incorporate an abundance of expressive power, leading
to realistic and clearly visible intelligence.

This goal of "real" intelligence in a computer is also one of the reasons Rockingstone
participates in this project. They are developing a programming environment particularly
suitable for artificial intelligence programming: OutOfBrain. Rockingstone wants to make
sure that OutOfBrain obeys the guide-lines set out by the academic MAS community, hence
the cooperation with the University of Groningen. Another motivation of Rockingstone to
participate in this project is that they want to guide the further development of OutOfBrain by
incremental testing. Possible improvements to the environment emerge while designing and
implementing the adaptive diary assistant.

Multiagent systems are used more and more in software engineering as a useful programming metaphor. It
often helps to think of objects as agents. However, this is not the usage of MAS we are aiming at here. We are
mainly interested in true MAS, with distributed knowledge, differing goals and cooperation or competition.
2 That this bot is called ALICE, just like the artificial intelligence research group at the University of Groningen,
is a coincidence.

11

1.2 Project goals

We examine how qualitative decision theory, graph rewriting, agent communication, user
modelling and interface design can be combined in a practical application. Through this
project, we want to improve our own understanding of these topics, with emphasis on
qualitative decision theory and graph rewriting. We also hope to contribute something to the

corresponding research fields.
OutOfBrain is a response to an increasing demand by the software development

community for a good agent programming language. We aim to improve OutOfBrain by
incorporating theories on agent behaviour derived from literature. Thanks to the current
project, the developers of OutOfBrain can get a clear picture of how the programming
environment behaves during the development of a real application. To do this, we need an
appropriate test-bed. An adaptive diary assistant is suitable for several reasons. First of all, the
domain of a diary system is well defined and relatively small, making it an appropriate
medium for theoretical research while being more than just a toy-problem. Furthermore, the
use of mental attitudes makes sense in an adaptive diary assistant. An agent that models the
user in order to maintain his or her diary could benefit greatly from natural concepts like
beliefs and intentions. Another reason that makes the domain suitable is the fact that there are
many opportunities for adaptation. The application we try to develop is a personal assistant
that maintains models of the user as well as the world around him or her.

To make our goals more explicit, it is best to split it into two parts. The first more or
less represents the motivation from Artificial Intelligence at the University of Groningen. We
want to get a better understanding of the issues a developer has to face when creating a
multiagent system. To achieve this, we try to create a team of agents that uses qualitative
decision theory in a dynamical environment and incorporate it into an adaptive diary assistant.
To highlight the focus of our research, we define our first research question as follows.

X How can Boutilier's QDT architecture be extended to allow for temporal
reasoning?

Our second goal corresponds roughly to the motivations of Rockingstone. We want to explore
and extend the capabilities of the OutOfBrain system. To do this, we try to create a team of
agents that shows realistic and clearly visible intelligence. Our multiagent architecture,
supported by literature, is translated to an OutOfBrain model that is in turn used to implement
an adaptive diary assistant. What follows is the second research question we focus on.

X Can Boutilier's QDT architecture, extended with a temporal modality,
be integrated into OutOfBrain?

These two main goals proved to be quite consistent, which made for a smooth cooperation.
The university provides the project with the necessary theoretical framework. Rockingstone
makes implementation of the theory in a versatile environment possible. The residue of our
goals when we remove these two parts is concerned with agent communication, user
modelling and interface design. These matters are treated as secondary goals. They should be
viewed as the context in which qualitative decision theory and graph rewriting operate.
Communication between agents, modelling the user and a good interface should be able to
increase the usability of the diary assistant in several ways.

First of all, through the study of agent communication, we want to increase the
application's performance and get a better understanding of sociality in MAS. Social skills are
necessary in most MAS applications (see for example [Weyns and Holvoet 2004] or [Stone

12

and Veloso 2000]). Second, we study user modelling, because literature shows that adaptation
skills improve performance on most complex tasks [Stone and Veloso 2000]. We think that
the ability to learn should not be considered as special. It should form an integral part of any
agent in a complex world. Finally, our reason for studying interface design is simple. We
think that every software project should devote at least some attention to the design of a
proper interface.

Creating a useful piece of software is also treated as a secondary goal. It is not so
much where the journey ends but it is the journey itself we are interested in. However,
throughout the duration of this project, we keep the development of a commercially
interesting diary assistant in mind. Our application lacks two important features which make it
less interesting as a product. First, a diary assistant should be portable. If the PC version turns
out to be a success, it would not be a major undertaking to create a PDA version from it
though. Second, the diary assistant should be connected to other PDA's. Most companies and
other institutions have a central diary system so that appointments can be scheduled more
efficiently. When combined with portable devices, connectedness becomes a powerthl tool.
MAS will play an important role in the emerging field of ambient intelligence [Aarts and
Marzano 2003]. Soon, portable, interconnected personal assistants will be a common sight,
each one represented by an autonomous agent. Besides maintaining one's diary, the assistant
can perform all sorts of other tasks.

1.3 Applied techniques

We aim to build an adaptive diary assistant using a unique combination of techniques from
different fields of research. The techniques we use can be divided into three groups:
qualitative decision theory, graph rewriting and the remainder: agent communication, user
modelling and interface design. All these techniques will be treated later in the thesis and they
are introduced briefly below in Sections 1.3.1 through 1.3.5. Our main focus is on qualitative
decision theory and graph rewriting.

The research protocol (methods) of this project can best be classified as scientific
software development. The protocol is an iterative cycle running from literature study to
design and finally to implementation. During the course of the project, the focus shifts ever
further toward the back end of the cycle (implementation). In parallel to this, the writing of
the thesis takes place under extensive guidance and supervision. Furthermore, we perform
weekly brainstorm sessions to plan our activities, gain new insights and stay on the same
track.

Because we venture in relatively uncharted territory, a lot of work has to be done
before we can actually start designing. During the first stage, by studying the literature, we try
to pin down the current state of affairs in the scientific community, concerning the topics that
are of interest to the project. Then, we try to extract ideas from literature that could be useful
during design and implementation. During the second stage, we aim to design three things.
First, we create a MAS architecture composed of QDT and parts of BDI. Second, we
specialize this design into one that is suitable for implementation in OutOfBrain. Finally, we
produce a design for the adaptive diary assistant we plan to build. Implementation can be
divided into three tasks: First, we build the MAS architecture in Delphi so that it becomes an
integral part of the OutOfBrain environment. Second, we implement the adaptive diary
assistant in OutOfBrain. Consequently, two totally different forms of programming have to
take place: one is textual, the other is graphical and at a higher level of abstraction.

Before briefly introducing the applied techniques, we should shortly explain the
application we have in mind. The diary assistant is composed of a diary and a todo-list. The

13

diary is used to store appointments and other obligations that have a specific date and time
associated with them. The todo-list is used to store obligations that are not associated with a
specific date or time. The system should move these todo-items to a specific point in time on
the diary, bearing in mind the workload and other appointments of the user. Also, instead of
manually scheduling things directly into the diary, obligations can be put on the todo-list
along with the command to schedule it automatically.

The longer the user works with the diary assistant, the better the assistant will
anticipate on his or her needs. For example, the diary assistant could ask itself the following
questions.

• Which hours of the week would this user like to be free?
• How much energy does the user have on a typical Wednesday?
• How many meetings can the user handle in one week?
• Which type of activity is relatively exhausting for the user?
• How many items should there be on the todo-list before I start moving them to the diary?
• Which activities cannot be done while the user is out of the country?
• How long is the trip from home to the office?

Now that there is some insight in the intended functionality of the application, the applied
techniques should be introduced one by one.

1.3.1 Qualitative decision theory

Our multiagent architecture is based on QDT (Section 2.3) [Boutilier 1994]. This architecture
uses a bimodal logic and ranks possible worlds in preference and normality orderings. We
also incorporate components of BDI (Section 2.4) [Rao and Georgeff 1991], in particular the
notion of time and the handling of actions and other events. We use qualitative representations
whenever we can, because of the drawbacks of quantitative methods (see Section 2.2).
Nonetheless, some information is best represented quantitatively, for example the dates and
times in a diary. In our architecture, composed of QDT and BDI, an agent can reason about
preferences, normalities, time, actions and other events. The adaptive diary assistant we build
in this architecture has three agents: One modelling the user, one maintaining the user's diary
and one maintaining the todo-list. This team of agents has the collective intention to serve the
user [Dunin-Kçplicz and Verbrugge 2002].

1.3.2 Graph rewriting and OutOfBrain

The programming environment OutOfBrain is currently under development at Rockingstone.
Its manual can be found in Appendix A. The environment is designed specifically for the
programming of intelligent agents. Another fact that distinguishes it from other programming
languages is that it uses graphical representations instead of text. OutOfBrain is a high level
programming language built on Delphi, the same language we use for the implementation of
the diary assistant's interface. The mechanisms at work in the OutOfBrain system have a lot
in common with graph rewriting. Therefore we compare it to the literature on existing graph
rewriting techniques in Section 3.1 [Blostein et al. 1995].

Figure 1.1 shows a simple example of a rewrite rule in OutOfBrain. The search
algorithm looks for a subgraph in the hostgraph that is isomorphic to the premise of the
implication and replaces it with the implication's conclusion. OutOfBrain has much in

14

common with logic programming languages like PROLOG. The main differences between
OutOfBrain and PROLOG are that OutOfErain uses graphical representations and a different,
but equally powerful search engine.

.

Figure 1.1: A simple rewrite rule in OutOfBrain (left) and an appropriate hosigraph (middle)
and resultgraph (right). On screen, dfferent colours are used to improve usability.

1.3.3 Agent communication

Communication is a crucial part of most multiagent systems. We use the FIPA standard for
agent communication [Wooldridge 2002, FIPA 2001]. In this standard, a message has the
following attributes: The performative (type of the message, e.g. request, inform), the sender,
the receiver, the content and the language and ontology that should be used to interpret the
message. This standard helps the agents to assist each other in pursuing the collective
intention of serving the user [Dignum et al. 2001]. It also aids them in developing a common
frame of reference.

1.3.4 User modelling

There are many methods at our disposal to facilitate user modelling. After careful
consideration, we ended up with four different tools that work together to model the user:
reordering and information injection in possible world orderings, qualitative reinforcement
learning, production compilation and statistical analysis.

QDT, the qualitative decision architecture our system is based on, is designed in such
a way that it is compatible with learning and other dynamical processes. Learning amounts to
the reordering of preference and normality orderings on possible worlds as well as the
injection of new information into them. Two sources of information could be used as input for
this learning mechanism.

First, we incorporate a qualitative version of reinforcement learning. The diary
assistant can be rewarded or punished for its behaviour, either implicitly or explicitly. For
example, if the user is not satisfied by the diary assistant's suggestions, he or she can say so.
The system will then try to find out why the user is not satisfied using multiple choice
questions'. Second, we could use a mechanism based on production compilation in ACT-R
[Taatgen and Lee 2003]. This architecture can be used to deduce rules from histoiy. Just like

'This learning behaviour can be shut down so that the user is not burdened with questions. He or she could be in
a hurry or simply not in the mood for questions. We use multiple choice questions because natural language
processing is beyond the scope of this project.

15

•

QDT, it has a strong cognitive basis since it was developed for cognitive modelling. If an
agent discovers that event A has been succeeded by event B several times, the (default) rule A
—, B should be added to the agent's beliefs. Rules can be removed or augmented in the same
way. Again, the user can be consulted through multiple choice questions to make sure a
derived rule is valid. Finally, despite all the advantages of qualitative learning methods,
certain aspects of the user's behaviour are modelled best using statistical analysis, for
example, the amount of energy a user has on an average day.

1.3.5 Interface design

We use standards from cognitive ergonomics to make sure that the interface of the diary
assistant is user friendly. The conversational text-interface is an old-fashioned means of
control, but we think it should not be abandoned. Modern chatbots show us that if an agent is
sufficiently intelligent, a conversational text-interface is a convenient medium of control.
However, we choose to support the conversational text-interface with graphical control
mechanisms like buttons. Natural language processing (NLP) makes a conversational text-
interface truly useful. If NLP were integrated into the system, the use of buttons and the like
would not be necessary to ensure a user friendly interface. Unfortunately, this is beyond the
scope of our project. The development of a PDA version of the diary assistant would require
extensive study in interface design and cognitive ergonomics, since PDA's have small screens
and the user controls them differently. In the current project however, we are not yet
concerned with these issues.

Now that our motivations, goals and applied techniques have been explained, we move on the
literature we studied for this project.

16

-UI

2 Literature on qualitative decision theory
The literature is divided into two Chapters. The current Chapter treats studies on qualitative
decision theory. It is the topic receiving our main focus. In particular Boutilier's QDT
(Section 2.3) takes up a large part of this Chapter. Literature on other topics than qualitative
decision theory is treated in Chapter 3. These are graph rewriting, agent communication, user
modelling and interface design.

In Multiagent Systems, MAS from now on, agents reason about what state of affairs they
want to achieve and how they should go about achieving this state. Typically an iteration of
an agent's reasoning can be divided into two main parts: deliberation (to determine the goal)
and means-end-reasoning (how to achieve this goal) [Dunin-Keplicz and Verbrugge 20021.
Figure 2.1, taken from [Broersen et al. 20021, shows the typical steps an agent has to take to
reach a certain goal. First, the agent observes the environment. He uses the observations to
generate a candidate goal set. Next, he selects one of these goals through a reasoning process.
The goal that comes out on top is used in the planning module to determine which actions the
agent should execute. The border between deliberation and means-end-reasoning lies where
the chosen goal enters the planning module. This thesis does not deal with means-end-
reasoning. At least not in its literature study. We refer to [Boella et al. 2005, Boutilier 1994,
Dunin-Kçplicz and Verbrugge 2004] for means-end-reasoning in the context of qualitative
decision theory.

Canthilate
Obsnvation goal sd Goal AcUons

generation select

Figure 2.1: Typical scheme for deliberation and means-end-reasoning in an agent. The
border between them lies where the chosen goal enters the planning module.

According to [Dastani et al. 2003], there are four successful branches in decision theory:
classical decision theory (CDT), qualitative decision theory (QDT)', knowledge based
systems (KBS) and beliefs, desires and intentions systems (BDI). CDT is the most established
framework of these four. It is much older than the others and it is distinguished from QDT,
KBS and BDI by the fact that it uses real valued calculations for determining which states to
pursue (Section 2.1). The other three all use less of a quantitative method, hence they are
called qualitative decision theories. Our study focuses on QDT and BDI systems (two of the
qualitative decision theories).

l Dastani et al. use the abbreviation QDT to refer to Boutilier's qualitative decision theory, not to refer to
qualitative decision methods in general. We adopt this convention. We use QDT to refer to Boutilier's work and
qualitative decision theory to refer to the field in general.

17

In Section 2.1 we describe the global history of decision theory derived from [Doyle and
Thomason 1999]. Section 2.2 summarizes the reasons for abandoning CDT when modelling
complex problem solvers. Most of these reasons have again been derived from [Doyle and
Thomason 1999]. Section 2.3 covers QDT in detail [Boutilier 1994]. This work is the main
inspiration for our own architecture described in Chapter 4. Section 2.4 summarizes [Rao and
Georgeff 1991] on the BDI architecture. We use this study to complement our model with
some concepts that are not present in QDT. Also, in Section 2.4.3, we present an overview of
the BOlD architecture [Broersen et al. 2002], a direct cousin of BDI. Finally, Section 2.5
presents some thoughts on how to combine QDT and BDI into a single model.

2.1 Some history on decision theory

Decision making has been studied formally since the seventeenth century. The traditional,
quantitative approach to automatic decision making reached maturity in the 1 950s [Doyle and
Thomason 1999]. A cornerstone in the development of quantitative decision theory was
[Ramsey 1926]. Frank Ramsey's theory enabled us to derive sensible, quantitative utilities
and probabilities over alternatives. Ramsey's most notable successor is arguably Leonard
Savage [Savage 1954]. Modern Bayesian decision theory or CDT was born. It provided a way
to choose between alternatives, maximizing expected utility. The expected utility of an action
a is calculated as follows.

E(a)= U()P(a', a)

Where n is the number of possible outcomes of a, U(w) is the utility function over outcome
cv, and P(w,Ia) is the probability that action a leads to outcome cv.

Almost immediately after the birth of modern Bayesian decision theory, Herbert
Simon and other artificial intelligence researchers questioned the usefulness of the new
theory. They argued that it requires too much information, reasoning power and memory.
However, modern Bayesian decision theory was not discarded due to this critique. In fact, the
theory still has numerous applications today. Instead, the critique led to the birth of a new
branch of decision theory called qualitative decision theory [Doyle and Thomason 1999],
using preference orderings and likelihood orderings on possible worlds or even binary values
to represent preference and likelihood. Many of the problems of modern Bayesian decision
theory do not apply to this new branch (see Section 2.2).

It is time for a simple example to explain informally how these qualitative methods
work. Imagine an agent who models his user, living in Helsinki, to help him or her with
planning appointments. He could deduce that he should not go visit his mother in northern
Finland. He desires to go, but he also believes that he would not be back in time for an
important meeting next Monday, because the bush pilot flies back from northern Finland to
Helsinki only once a week. The agent desires to close an important business deal during the
meeting on Monday and he believes he can probably achieve this too. If this deal is too
important for him, the agent will decide not to go to his mother. The central concepts in this
deduction are the verbs desire and believe. The argument could quite easily be translated into
a logic for qualitative decision making. This reflects the intuitive nature of such logics.

In 1987, Michael Bratman postulated that intentions are an important concept in
human practical reasoning and that they are not reducible to beliefs and desires [Bratinan
1987]. His views are now widely accepted and used extensively in qualitative decision theory,

18

most notably in BDI, the most popular approach among qualitative decision theories. An
agent's intentions are a consistent subset of his goals; the goals that currently have the agent's
focus [Dunin-Kçplicz and Verbrugge 2002].

In [Cohen and Levesque 1990], a logic is explained that uses statements about time
series as well as about an agent's goals and beliefs. Intentions are not considered to be
fundamental in their logic. Instead they are defined as choice with commitment. Cohen and
Levesque's work has made a large impact on the field of decision theory. However, it has
been criticized to be too complicated (in terms of complexity measures and
comprehensiveness). A comparable study has been conducted by Rao and Georgeff, which is
explained in detail in Section 2.4. Their BDI architecture does treat intentions to be
fundamental. The theory they ended up with is considered to be easier to apply than the theory
by Cohen and Levesque for several reasons. We will not get into these reasons in this
Master's thesis however.

2.2 Motivations for using qualitative methods

There are many reasons to prefer qualitative methods over quantitative ones. [Doyle and
Thomason 1999] provides a nice overview. When people give each other advice, they do so
by means of symbolic communication. Human reasoning also depends largely on symbolic
representations', most human reasoning procedures do not use numeric trade-offs. Qualitative
decision theory provides a better way of describing the reasons for decisions in ways that
humans find intelligible than modem Bayesian decision theory. According to [Fong et al.
2003] and many other studies, interaction performance increases when robots behave more
like humans. Qualitative decision methods can contribute to the resemblance between human
behaviour and robot or software-agent behaviour. The diary assistant we want to develop
should give the user advice about task planning much like a human secretary would. This
makes qualitative representations a natural choice for facilitating both communication and
reasoning. Traditional quantitative methods for making decisions are not supported by either
intuition or biological plausibility. This becomes even more apparent when one considers the
question whether there is a universal currency for measuring the utility of outcomes [Doyle
and Thomason 1999].

Besides these philosophical objections, there are also some more practical issues
involved2. First of all, it is hard to determine all these utilities and probabilities. Together with
time and space complexity, this makes accurate deliberation intractable in most complex
domains. Already in the 1950s, Herbert Simon and his colleagues proved that for many
complex problems, quantitative decision theory requires too much information, reasoning
power and memory [Doyle and Thomason 1999]. Due to the unsatisfactory results ofCDT in
complex environments, a new approach to problem solving emerged: bounded rationality or
satisficing [Simon 1987]. Instead of pursuing a state that is guaranteed to be the best one
possible, this new approach pursues a possibly suboptimal state. An agent will only reason for
a certain period of time and then tries to achieve the state it has deliberated to be "pretty
good". The agent simply doesn't have the time to think it over more thoroughly. Generating
all possible plans and then selecting the best one would lead to optimal solutions. However
the number of possible plans grows exponentially with the number of possible actions,
making this method infeasible. Therefore in complex domains it is better to first derive goals

'Although these symbolic representations most probably have a distributed realisation basis in our brains.

Note that the philosophical objections described here can have very practical consequences.

19

and then construct plans that lead to those worlds despite the risk of suboptimal results

[Broersen et al. 2002].
There are other problems concerning the broad applicability of quantitative methods.

First of all, they lack creativity in the sense that they cannot make decisions in unforeseen
settings. Furthermore, most quantitative methods do not provide appropriate ways to make
decisions when there is partial information or uncertainty about goals and preferences,
whereas most qualitative methods do. Quantitative methods also lack ways of handling ne
information or the ability to reconsider goals.

The reconsideration of goals is the source of an important debate in the history of
artificial intelligence. When should an agent check whether his goals are still worth pursuing?
Possible reasons for abandoning goals are that the goal or its motivation has been satisfied.
that the goal or its motivation can no longer be achieved or that its motivation may be reached
by some other means. Goals must be reinforced during reconsideration or they are dropped
[Broersen et al. 2002]. The problem is that goal reconsideration takes up valuable resources,
so it should only be done when the agent expects it is necessary.

As mentioned before, quantitative methods do not provide appropriate ways for
capturing human expressions about decision making. One of the most important types of
expressions used in human decision making is the generic preference relation, for example: I
would rather do the dishes tomorrow than today." or "I prefer to have no obligations between
1 pm and 2 pm." The last reason we put forward here for preferring qualitative methods over
quantitative ones is the requirement for broad knowledge of the world. It is much easier to
construct a database of world knowledge without the tedious consideration of all the utilities
and probabilities that hold in the domain.

Despite all the drawbacks of quantitative methods, many types of information are
simply best represented quantitatively. There have been many studies that combine
quantitative and qualitative information into hybrid systems. Furthermore, the developers of
qualitative methods tend to build on existing quantitative techniques whenever possible.

2.3 QDT logic

The theory [Mehdi Dastani 2003] refers to as QDT is presented in [Boutilier 1994]. In this
paper, Craig Boutilier describes a logic CO and a corresponding possible worlds model, along
with several reasoning strategies. In Boutilier's theory, a goal is generally a proposition or
formula that the agent should make true. The corresponding semantics consist of a set of
possible worlds or states that satis& the goal proposition [Cohen and Levesque 1990]. Note
that there is only one agent in this framework. As we shall see, Boutilier's theory is easily
expandable to a version that includes more than one agent.

2.3.1 Introduction to QDT

Sometimes, goals turn out to be unachievable. An agent should be able to adopt alternative
goals in such cases. Furthermore, an agent should be allowed to formulate exceptional
situations in which a certain goal is less desirable. In order to achieve all this, QDT ranks
possible worlds according to their degree of preference. The basic concept in the theory is
I(BIA), which means "ideally B, given A". The language LCPL Boutilier uses consists of a
finite set of propositional variables F, the usual connectives and the unary modal operators o

20

and . Boutilier uses A and B for propositional atoms and a and fi for formulas'. The operator
0 should be read as 'preferably', whereas ñ should be interpreted as 'less preferred'. The
theory is not concerned with the actions that actually take an agent to a goal-world. The
possible worlds semantics for LCPL consists of models of the form M = <f , V, where W
is the set of possible worlds, <is a transitive, connected binary relation on W2 and V is the
valuation function mapping propositions in possible worlds to binary truth values (V: P x W
—' (0, 1)). The relation v w means that world v is at least as preferred as world w.

Boutilier illustrates preference orderings with the example in Figure 2.2. According to
this ordering, the agent prefers worlds in which he is not driving to work (-'D), it is not
raining (—'R) and he is not carrying an umbrella (-'U), the bottom world in Figure 2.2. If this
is not possible, he prefers worlds where he is driving to work, it is raining, but he is not
carrying an umbrella. This world could occur, because the agent cannot control whether it is
raining or not. Even less preferred are worlds in which the agent is walking in the rain with an
umbrella, this situation migIt occur because the agent's car is broken. The least preferred
world in this example is the one in which the agent is walking in the rain without an umbrella.
Note that preference orderings need not contain complete knowledge, hence the term "cluster
of possible worlds". If nothing is stated about the truth value of a proposition, the agent is
indifferent to the truth of that proposition. This property has been derived from system Z
[Pearl 1990]. The ability to reason with incomplete knowledge is a necessity in complex
domains.

Figure 2.2: Example preference ordering from [Boutilier 1994]. The possible worlds cluster
at the bottom represents the best worlds. The agent prefers worlds in which he is not driving
to work, it is not raining and he is not carrying an umbrella. If this is not possible, he prefers
a world where he is driving, it is raining, but he is not carrying an umbrella.

Boutilier's preference ordering scheme is a lot like constraint satisfaction. The agent tries to
satis1' as many constraints as possible, ending up with the best possible world. In many cases,
the ideal situation is not achievable, because the agent does not have the power to manipulate
the truth values of certain propositions (e.g. whether it is raining or not). We now turn to the
truth definitions for Boutilier's modal operators:

Def 2.1 M) Da if for each v such that v w, M a

'Although Boutilier does not say this explicitly; it follows more or less, from the formulas in his 1994 paper. He
does not provide a clear definition of the language LCPL.
2 w consists of clusters of equally preferred worlds and these clusters are totally and transitively ordered by S.

When the logic CO is extended to the logic QDT, is replaced by p, because another binary relation is

needed in QDT.

21

Def 2.2 M ha if for each v such that w < v, a

Definition 2.1 states that Da is true at world w if and only if a is true in every world at least as
preferred as w. Definition 2.2 tells us that ha is true in wjust in case a is true in every world
less preferred than w. These modal operators are used to reason about worlds on a preference
ordering, in the same way that they can be used to reason about worlds on a time sequence,
either to look forward or backward in time. Several modal operators can be derived from
these two basic ones in the usual way:

Def2.3 MOa iffM1J'a
Def 2.4 MOa iffM-'h-'a
Def2.5 MWha iffMDa and MWha

Def2.6 M$a if MOa or
It is common practice to define the diamond operator (0) as not-box-not (o'). According to
Definition 2.3, Oa means that a is true in at least one world at least as preferred as w.
Definition 2.4 expresses that a corresponds to the fact that a is true in at least one world that
is less preferred. Definition 2.5 says that ha corresponds to the fact that a is true in all worlds
in the preference ordering, whereas Definition 2.6 says that 0a is the same as stating that a is
true in at least one world in the preference ordering.

2.3.2 The logic Co

An approximation of the meaning of J(BIA) is "In the most preferred A-worlds, B should also
hold" (Definition 2.7). This is defined semantically as follows. A is false in each and every
cluster of possible worlds on the preference ordering or A is true in at least one cluster of
possible worlds on the preference ordering. In the latter case, B has to be true in each equally
or more preferred A-world. This comes down to the fact that the agent pursues the truth of B
when A is true. This definition resembles the one stated by David Lewis about counter-
factuals [Lewis 1973]. Reasoning with counter-factuals is concerned with what the world
would look like if a given sentence were false. For example, what would the world be like if
John F. Kennedy had not been shot? In Lewis' semantics, the sentence "If Kennedy had not
been shot (-K), the USA would be a peaceful country (P)" is true if and only if in the —K-
worlds that most resemble the real world, P holds. If we substitute "the -'K-worlds that most
resemble the real world" with "the most preferred -'K-worlds", we end up with Boutilier's
definition for the ideally operator; I(PI-'K).

Def 2.7 I(BIA) df hA V (A A o(A —' B))

Craig Boutilier uses some extra notation that has to be mentioned here. Absolute preferences
are represented as I(AT) or 1(A) for short, which means that A is preferred in every context.
1(A) is in turn logically equivalent to oA. Intuitively, this means that from at least one cluster
of worlds on the preference ordering, A is true in that cluster and every cluster that is more
preferred (including the most preferred cluster). This is the same as saying that one has an
absolute preference toward A.

22

One can also specif' "don't care" conditions like —'I(-BIA): In the most preferred A-worlds it
is not required that -'B, or equivalently: "B is tolerable given A". Recall that the diamond
operator has the same meaning as not-box-not, the same is true for tolerable and not-required-
not. The formula -'I(-BIA) is abbreviated as T(BIA).

Instead of comparing the preference relation between worlds, one can compare two
propositions directly. A S B means that the best A-worlds are at least as good as the best B-
worlds, see Definition 2.8. An agent has a preference of A over B if and only if everywhere on
the preference ordering the following holds: If B is true in a world then A is true in a world
that is at least as preferred as that world. Statements like this, as well as statements built from
Definition 2.7, should be used to inject information about preferable propositions into a
knowledge base in order to reason about preference orderings.

Def 2.8 A SB r(B —* OA)

In many domains it is useful to state strict preferences. We speak of a strict preference if a
proposition is more desirable than its negation in every context. This situation is formalized in
Definition 2.9. Intuitively, it means that everywhere on the preference ordering, if C is true in
a world, C is also true in all more preferred worlds. Note that the closed world assumption is

at work here, since —C does not even occur in Definition 2.9. We simply assume that C is
false if the truth of C is not explicitly stated.

Of course, preference information should be consistent. If a proposition is preferred in
a certain situation, the proposition should also be tolerable in that situation (Definition 2.10).
Furthermore, the property of preferential detachment holds in CO (Definition 2.11). If ideally
B given A and ideally A in every context, then also ideally B in every context. This is an
intuitive axiom: If A is true all over a certain bottom part of the preference ordering (most
preferred worlds) and B should be true in the most preferred A-worlds, then B should be true
in some bottom part of the ordering'. However,factual detachment (Definition 2.12) does not
hold in CO, because there can always be a more preferred world than the one from which we
evaluate Definition 2.12 where A is false (or unknown and thus false under the closed world
assumption). Therefore B need not be true all over a certain bottom part of the preference
ordering.

Def 2.9 (C — DC) (true if there isa strict preference for C)

Def2.10 I(BIA) —' 'I(-'BIA) (axiom of CO)

Def2.11 I(BIA) A 1(A) —+ 1(B) (axiom of CO)

Def2. 12 1(BIA) A A —' 1(B) (not an axiom of CO)

The most important feature of Boutilier's preference orderings is that an agent's preferences
depend on the situation at hand. For example, an agent can have the following preferences at
the same time: 1((J1R) and I(—U]-'R), representing that the agent should take an umbrella
when it is raining and leave it home when it is not.

We will see in Section 2.3.3 that Boutilier uses a similar operator for normality orderings of
possible worlds. These normality orderings tell the agents something about how likely a
certain world is. This information should be combined with a preference ordering to

A is true in some bottom part of the ordering if and only ifC]A is true; there is an absolute preference for A.

Note that A and B do not need to be true in the exact same bottom part.

23

determine the relative utility of a world, which in turn determines which world an agent
should try to achieve. The preference and normality orderings also make default reasoning
possible [Reiter 1980]; Boutilier's logic is defeasible. When new information becomes
available, an agent can change his conclusions. Most logics (including BDI) are monotonic in
the sense that once a conclusion has been reached, it cannot be retracted. Defeasibility is one
of the reasons why we use QDT as a starting point for our model. Note that information
injections about preference and normality relations can be done by the designer or by a
learning process. For our adaptive diary assistant, we use Boutilier's preference ordering and
normality ordering along with a third ordering that expresses time series. The apparatus for
this third modality is derived from [Rao and Georgeff 1991].

2.3.3 The logic QDT

Boutilier extends his logic Co to the logic QDT. The CO models are supplemented by a

relation on pairs of possible worlds and the symbol <in CO is replaced by p in QDT. The

transitive, connected sw-relation expresses normality orderings in the same way that the
transitive, connected S'-relation expresses preference orderings. v w means that world v is
at least as likely to occur as world w. This extension makes it possible for an agent to consider
only worlds that are likely to occur.

Combining the preference and normality ordering could lead to a method for
considering only worlds that are both relatively likely to occur and relatively preferable. It
seems that a mechanism similar to the maximization of expected utility [Savage 1954] could
be used to determine goal worlds in Boutilier's system. One could link a natural number to the
relative preference and relative normality of a world and multiply them into a measure of
expected utility for that world. In his 1994 paper, Boutilier is very brief about how one should
accomplish a measure of expected utility, but it seems to us that the method is straightforward
and expected utility can be calculated much like Savage's method described in Section 2.1.
The main difference then between CDT and QDT is that CDT uses real valued calculations
where QDT uses natural numbers assigned to orderings. One could therefore question whether
QDT is a real qualitative method. With respect to this question we propose to position QDT
between CDT and BDI, because BDI uses purely binary representations and is therefore truly
qualitative.

We now turn from Boutilier's logic CO to its extended version QDT. QDT-models are
of the form M = <W, �p, jv, V>. W is the set of possible worlds, V is the corresponding
valuation function assigning truth values to propositions in possible worlds. p is a preference
ordering on W x W. Similarly, Sw is a normality ordering on Wx W. The relation v p w means
that world v is at least as preferred as world w. The relation v w says that v is at least as
normal a situation as w. A QDT-model is actually two different CO-models combined, one for
preference, one for normality. Consequently, the logic QDT has twice as many modal
operators as the logic CO: Dp, Op , °N and bN. These operators and their derived operators are
interpreted as before (Definitions 2.1 through 2.6). The conditional I(BIA) can be expressed
using 0p and p as in Definition 2.7. A new conditional connective A B in terms of °N and

°N is introduced to express the default rule "Under normal circumstances, if A, then also B."
The fact that QDT uses a non-monotonic logic, gives it an advantage over BDI with its

monotonic logic. For an introduction to non-monotonic reasoning and default-logic, we refer
to the classic [Reiter 1980]. The =-connective for default applications should also be
interpreted using Definition 2.7. The definition for A B and I(BJA) is the same, they only
differ in their semantics. I('BIA) means "ideally B given A" (see the more detailed description
just above Definition 2.7). A = B has the following meaning: "if A then normally also B".

24

This difference in meaning is due to the fact that they are applied to different orderings. When
we examine Definition 2.7 applied to normality orderings instead of preference orderings, we
get a description like this: A is false in each and every cluster of possible worlds on the
normality ordering or A is true in at least one cluster of possible worlds on the normality
ordering. In the latter case, B has to be true in each equally or more likely A-world. It is
important to notice that Definition 2.8 through 2.12 and the axioms below also apply to
normality orderings. The logic QDT truly is just two CO logics with exactly the same
syntactical properties, but different semantics.

Boutilier uses the following axioms and inference rules for the logic QDT. They hold for both
preference orderings and normality orderings, so the boxes and diamonds can have either a P
as subscript or an N as subscript.

K o(A—B)--(t1A—oB)

K' ö(A-+B)--iA---bB)

T oA—'A

4 oA—DoA

S A—OA

H (tJAAiB)—(AVB)

Nec From A infer iA

MP FromA—BandAinferB

From the axioms and inference rules above, we only discuss the axioms S and H, because all
other axioms are quite common in modal logic. Axiom S expresses the fact that if A is true in
a world cluster x on the preference or normality ordering, then OA is true in every cluster of
worlds y less preferred or less likely than x. This means that A should be true in a cluster of
worlds z at least as likely or preferable as y. This is an axiom, because z can be the same
cluster as x where A is true'. Axiom H looks a bit more complicated, but it is a very intuitive
axiom. If somewhere on the ordering, say in cluster x, 04 A tiB is true, then A V B is true
everywhere on the ordering. After all, A is true in every cluster at least as preferred/likely as x
and B is true in every cluster less preferred/likely than x.

2.3.4 Properties of QDT

A fair part of [Boutilier 1994] is about the properties of the logic QDT. First of all, he states
that the logic is sound and complete with respect to the class of QDT-models. Next, he
defines the default closure of a knowledge base as in Definition 2.13. Cl(KB) is the set of
propositions that follow logically from applying default rules to the knowledge base. The
propositions in C1(KB) are all true under normal circumstances, but they can become false

'Axiom S is similar to the basic temporal axiom A —. I{FA Inaani!l. It says that if A is true at a certain point in
time, HFA is also true in that point. It has always been the case that at some time in the future A is true.

25

when new knowledge is added to KB. A QDT-agent ought to act as if C1(KB) were true, not
just KB. Ideal goals are defined by Definition 2.14.

Def 2.13 Cl(KB) = (a E LCPL. KB a)

Def2. 14 a is an ideal goal if M I(aCl(KB))

Events are divided into controllables, influenceables and uncontrollables. An example of an
uncontrollable is whether it is raining or not. Taking an umbrella or leaving it at home is a
typical controllable event. The set of controllable propositions is a subset of the
influenceables. Consider a situation where a follows from either A, B or C. M A v B v C
a. If for example only B is controllable and A and C are uncontrollable, then a is an
influenceable. If A, B and C are all controllables, then a is also a controllable.
Uncontrollables are divided into the observables and the unobservables. The class of
unobservable uncontrollables is not useful for deliberation since the agent cannot possibly
know whether these are true or not.

Intuitively, an agent should only pursue the truth of propositions over which he has
influence or control. But an agent should also take into account the truth values of the
uninfluenceables and their logical consequences when determining his goals. To incorporate
this kind of behaviour into QDT, Boutilier defines complete knowledge goals (Definition
2.16). UI(KB) is the subset of the default closure of a knowledge base on which an agent has
no influence (Definition 2.15). A fact worth noting is that the worlds where UI(KB) is fully
satisfied are the worlds that fill the bottom, most likely part of the normality ordering. A
complete knowledge goal is a proposition that is true in the most ideal worlds where all
elements of UI(KB) are true. No other worlds have to be considered by the agent, because
they are not genuine possibilities. (Not all elements of UI(KB) are true in those other worlds.)
Using the deductively closed set of uninfluenceables, an agent can now deduce a complete
action set ft that guarantees the truth of each complete knowledge goal a (Definition 2.17). A
complete action set is a complete truth assignment over the set of controllables. In other
words, a complete action set specifies for each possible action whether the agent should
execute it or not. The agent should minimize the number of true propositions in ft. because
actions have costs associated with them. The order in which the actions in ft have to be
executed is not specified. In most domains, the order of execution is important however, so
Boutilier's architecture should be extended to make ordering actions in time possible.

Def2. 15 UI(KB) = (a E Cl(KB): a is uninfluenceable)

Def2. 16 a is a complete knowledge goal if M I(aI UI(KB)) and a is controllable

Def2. 17 an atomic goal set ft is a set of controllables such that M UI(KB) A ft —, a

Preference statements can now be interpreted differently. Boutilier gives the example "1 prefer
an umbrella when it is raining" which should now be interpreted as I(UIUI((R))) or "Ideally, I
have an umbrella with me given the uninfluenceables in my knowledge base." In this case,
UI(KB) is the singleton (R), the only uninfluenceable and at the same time the only element
of the KB (R).

A QDT-agent determines reasonable courses of actions by first deducing all default
consequences of its knowledge base and then reasoning with this knowledge as if it were
certain. So a certain priority is given to defaults over preferences. Boutilier's algorithm first

26

1

determines all default consequences of the knowledge base. The extended knowledge base we
end up with is then used for reasoning, along with the available preference information.

Boutilier points out that in order to create a truly rational agent, we need to calibrate
the preference and normality orderings somehow. An agent has to consider both probability
and utility measures when calculating the goal state. If a highly preferable state is also very
unlikely to occur (e.g. due to the high probability of failure of an action), it is probably not
worthwhile to pursue it. This idea is ancient; the most popular approach for doing this is
arguably the maximization of expected utility [Savage 1954]. Boutilier proposes a method for
calibrating preferences and normalities that works essentially the same as Savage's method,
only it uses natural numbers instead of real values. In Section 4.3 we apply this idea to a
worked example.

But what about domains with incomplete knowledge? Clearly, complete knowledge goals
(Definition 2.16) are not appropriate here, because the agent does not have complete
knowledge. If the agent does not know the outcomes of his actions and he does not have full
accessibility to the world, surely the deliberation process described above would not work.
Deliberation in such a non-deterministic environment has to consider several possible
outcomes of a certain course of events (controllables, influenceables and uninfluenceables).
The solution Boutilier proposes resembles the minimax approach from game theory (see for
example [Russell and Norvig 1995]). He suggests that an agent should consider the worst
result of each complete action set and execute the one with the best worst result. The minimax
algorithm has been criticized to be sensitive to outliers in the following way. If an action has
just one, highly unlikely but also highly unpreferable outcome, the action will not be chosen.
Another action could have a better worst outcome, but also many other bad outcomes.
Nevertheless, minimax will choose the one with the best worst outcome. Several refinements
to minimax have been proposed so that it can handle such cases as well. QDT's deliberation
algorithm could be refined in the same way. Boutilier agrees with this observation: He states
that the worst possible outcome need not always occur, which leads to far from optimal
solutions in some cases.

In order to say something about the transitive, connected preference relation on
complete action sets, the notion of action set dominance of action set Ai over action set ..*2 is

introduced. It is captured in Definition 2.18 (,* ..* or * is at least as good an action set as
ft2). It says that in at least one world cluster x on the preference ordering, the following three
formulas hold: .A2 is executed, every element of UI(KB) is true, making it a genuinely possible
world' and (fl A (JJ(KB)) is true. This last formula means that in no world cluster y less
preferred than x, *j and UI(KB) are true simultaneously. This in turn means that in such a
cluster y, action set ..*j should not be the executed set while all elements of UI(KB) are true
(making it one of the most likely worlds). In other worlds, the worst possible outcome of.A1 is
not worse than the worst possible outcome of.,*2. This definition assumes implicitly that there
is at least one outcome associated with the execution of .$i. This assumption, together with
Definition 2.18, implies that the worst outcome of.,1 is better than the worst outcome of fl2,
the minimax idea. We claim that in most situations the method for maximizing expected
utility described in Section 4.2 yields the same results as applying action set dominance, but it
is less sensitive to the sort of outliers explained above.

UI(KB) should be interpreted as the set itselfor the conjunction of all its elements. In Definition 2.18, the latter
interpretation should be used. Recall that possible worlds where all elements of UI(KB) are satisfied are at the
bottom, most likely part of the normality ordering. So Definition 2.18 only tells us something about worlds that
are likely to occur, which is good.

27

Def 2.18 M OP(ft2 A UI(KB) A p(ftj A UI(KB)))

Now, how to determine the best complete action set? To do this, we do not need to compare
them all in a pairwise fashion, which reduces time complexity. Instead M ft -'.A4 is the
necessary and sufficient condition for "ft is a best action set", because action sets are
complete. The negation therefore means that at least one conjunct is false. This is actually the
same condition as M ft, ,fl for eachj, but it is much easier (less expensive) to check. The
cause for this convenience is that every complete action set ft3 also satisfies -'ft. When a
different action set is chosen than the best, a worse outcome becomes possible (Definition
2.19). Intuitively, this means that the worst outcome of every action set ftj is worse than the
worst outcome offt.

Def 2.19 Let ft be a best action set for KB and ft1 be any complete action set. For any
w UI(KB) A ft there is some v UI(KB) A ft3 such that w p V.

Next, Boutilier defines the necessary and sufficient condition for a cautious goal a: V(ft4 ft
is a best action set) a. The disjunction of all best action sets should entail a. If A A B and A
A -'B are best action sets, then A is a cautious goal, but B is not. With (A A B) V (A A -'B) as
a premise, it is easy to see that one can deduce A, but not B, either through proof by cases or
by transforming the premise to conjunctive normal form.

In Figure 2.2, the most preferred world is (-'1), -'R, -'U), I walk to work without an
umbrella and it is not raining. Since R is uncontrollable and unobservable, the agent should
not adopt (—'D, -'R, -'U) as the goal world. The next best world is (D, R, -'U). In this
example there is only one best action set fti: (D, -'U). So the necessary and sufficient
condition for being a cautious goal (V(ft4 : ft, is a best action set) a) becomes D A -'U
-'U, which is true.

Finally, Boutilier applies the notion of information value to QDT. This is a useful
concept in domains where retrieving information is costly and agents should only retrieve
high valued information, that is likely to influence their decisions. An atom 0 has value if a
best action set ft4 with respect to KB is not a best action set for either KB u (0) or KB
u (—0). In this case, retrieving information about the truth of 0 could lead to goal
reconsideration. In all other cases, the effect of the truth of 0 on the goal state would be trivial
and not worth retrieving.

After detailed examination of [Boutilier 1994], we arrive at the conclusion that QDT
has a firm theoretical basis and substantial practical value. We now turn to some other
approaches to qualitative decision theory. In particular, we devote considerable attention to
Rao and Georgeff's BDI architecture.

2.3.5 Knowledge based systems (KBS)

Another approach to qualitative decision theory distinguished by [Dastani Ct al. 2003] is KBS
or knowledge based systems. One of the most influential researchers of that approach is Judea
Pearl [Tan and Pearl 1994]. He uses a calculus that is more quantitative in nature than QDT. It
is therefore also referred to as a semi-qualitative method. We hardly use KBS as inspiration
for our own architecture, so it is not covered here. We do mention it, because it forms an
important part of the field of qualitative decision theory. It has been argued that KBS has
greater expressive power than Boutilier's QDT [Dastani 2003]. However, it is also a more
complicated and less intuitive approach. An interesting difference between Boutilier's theory

28

U

and Pearl's theory is that Pearl uses a bipolar scale for preferences. Worlds can be good, bad
or neutral. Neutral worlds being represented by a preference value of zero, good worlds by
positive numbers and bad worlds by negative numbers. We incorporate this idea into our own
architecture.

2.4 BDI logic

Besides [Boutilier 1994], the theory presented in [Rao and Georgeff 1991] is another factor
that influences our work. Their BDI architecture focuses on the generation of intentions.
Observation, communication and learning lead to beliefs about the environment and other
agents. These beliefs serve to constrain the set of goals (desires) the agent can have. The set of
goals the agent ends up with is subjected to a reasoning step that extracts a consistent subset
of the goal set and turns it into the set of intentions. These intentions should be viewed as the
goals (desires) the agent will try to achieve in the current situation. Once such a set of
intentions is found, the agent can execute the appropriate actions to reach a world that
satisfies them.

The binary nature of the BDI architecture is the most striking difference with
Boutilier's QDT. This causes the preferability of different intention-accessible worlds to be
indistinguishable. An agent has an intention toward in the current world if and only if is

true in every intention-accessible world associated with the current world. The agent can
choose one of these worlds at random, they make equally good goal states. In QDT there is (in
most cases) one cluster of worlds that has the best preference-utility-combination (Section
2.3), so the agent does not have to choose the goal state indeterministically. The winning
cluster can still consist of many worlds, but this is due to incomplete knowledge. The worlds
are the same with respect to what is known. In BDI, the different intention-accessible worlds
can be fundamentally different, so BDI agents are often facing difficult choices. However,
this corresponds to reality; humans also have to choose between different plans that are
considered to be equally good to reach an intention .

QDT forms the basis for our model and we use the BDI architecture to incorporate the
notion of time into the QDT approach. See Sections 2.5 and 4.1 for a detailed description of
how QDT and BDI are combined. We do not need the distinction between goals and
intentions from BDI, because we have Boutilier's preference ordering which serves more or
less the same function. In fact, preference orderings make it possible to distinguish many
levels of preferability, instead ofjust two.

Rao and Georgeff first describe their theory informally and then the syntax and
semantics are explained formally. A BDI model is a collection of possible worlds where each
possible world is a time tree with a single past and a branching future. A node in such a time
tree is called a situation. These possible worlds are connected by three types of relations:
belief-accessibility, goal-accessibility and intention-accessibility. The belief-accessibility
relation connects a world to each world consistent with the agent's beliefs. The goal-
accessibility relation connects a world to each world that the agent desires to be in, not
considering the other knowledge he has. The intention-accessibility relation connects a world
to each world the agent would actually try to achieve from it, taking into account all other
knowledge it has.

29

2.4.1 Simple BDI example

To get a feel for the BDI architecture, we have examined a simple coin-toss game in detail;
see Figure 2.3. The goal of the game is to guess the outcomes of two consecutive coin tosses.
Player A tosses a coin and looks at it while making sure that player B does not see the
outcome of the toss. Next, player B does the same. Then, both players guess the outcome of
both tosses. This is of course not a fun game to play: Player A simply knows the outcome of
the first toss and player B knows the outcome of the second toss. They just have to guess the
other outcome to win.

One could distinguish three time steps in this game. It starts from a single possible
world, the one on the left of Figure 2.3. There are always two possible events from one point
in time to the next, resulting in four possible worlds at the end of the game. Let us consider
the situation where both tosses turn out to be heads, the actual world at the end of the game is
the one in the top-right corner of Figure 2.3. At t = 0, neither player knows anything about the
outcomes. At I = 1, player A knows the outcome of the first toss and player B is still in the
dark. Thus, player A has one belief-accessible world from t = 0, whereas player B has two. At
t = 2, player B knows the outcome of the second toss, but player A does not. So player A has
two belief-accessible worlds from his single possible world at t = I, resulting in two possible
worlds at t = 2: <heads, heads> and <heads, tails>. Player B has one belief-accessible world
from each of his two possible worlds at t = 1, also resulting in two possible worlds at t = 2:
<heads, heads> and <tails, heads>. Note that the number of branches in a possible world
declines when more information becomes available about the events that have occurred. If the
players would intersect their belief set by communicating with each other, they would
discover that the only possibility is <heads, heads>. On their own however, they have to
guess one of the outcomes.

A.

30

Figure 2.3: BDI model for the coin-toss example. Player A tosses the first coin, player B
tosses the second coin. Dotted lines represent heads-toss-events, dashed lines represent tails-
toss-events and solid lines represent belief-accessibility relations. The A 's and B's above the
solid lines indicate for which player the belief relationship holds.

In this game, we have only belief-accessibility relations between worlds. It does not make
sense to talk about goal-accessible relations (indicating which worlds an agent desires to
reach) or intention-accessible relations (indicating which worlds an agent will actually try to
reach given all his other knowledge). But these other relations work just like belief-
accessibility relations.

2.4.2 Formal definitions of BDI's logic and model

In a rational agent, a goal-accessible world is always a sub-world of a belief-accessible world,
making sure that he does not desire to achieve a world that he believes impossible to reach.
This is roughly the same as saying that the agent employs the rule GOAL('q) —. BEL(ço).

Being a sub-world means that the time-frame' of each goal-accessible world has to be a sub-
tree of a belief-accessible world. Furthermore, the valuations of the propositions in each goal-
accessible world have to be a subset of the valuations in a belief-accessible world. In the same
way, a rational agent employs the rule INTEND4o) — GOAL(i). This is more or less
equivalent to the fact that each intention-accessible world is a sub-world of a goal-accessible
world. This constraint makes sure that the agent only pursues worlds it desires to achieve.

The language Rao and Georgeff use is based on standard first order logic with a finite
set of atoms and the usual connectives. They use A and B for atomic sentences and çoi and ço
to represent formulas. In their extended multimodal predicate logic, they allow two distinct
types of formulas: state formulas and path formulas. Formulas of the former type are
evaluated at a certain situation (time point in a given world) whereas the latter type is true or
false along a certain path in a possible world (time tree). The single-agent architecture can
easily be extended to a multiagent architecture using a subscript for each agent's attitudes.
Rao and Georgeffis inductive definitions of state formulas and path formulas are given in
Definitions 2.19 and 2.20 respectively.

Def 2.19 St ate formulas
• First order formulas are state formulas.
• If,1 and c02 are state formulas and x is an individual or event variable, then: 'çoj, çoi V

co2 and 3xç1(x) are state formulas2.

• If e is an event type, then succeeds(e),fails(e), does(e), succeeded(e),failed(e) and
done(e) are state formulas.

• If is a state formula, then BEL(q,), GOAL(9,) and INTEND(qi) are state formulas.
• If ç is a path formula, then optional4o) is a state formula.

Def2.20 Path formulas
• State formulas are path formulas.
• Ifq,1 and q are path formulas, then: —'çoj, çoj V Q2, çoj U co2, Gço, and Oq'j are path

formulas.

Events (e) are associated with transitions between situations. In BDI we have a branching
ftture, because at a certain point in time, several events could occur. Each possibility results
in an extra branch (see Figure 2.3). In QDT, events can be controllable, influencable or

The points in time within the worlds (situations) with -< relations between them, but no information about the
truth values of propositions.
2 This definition is minimalistic in the sense that it does not include the basic symbols for conjunction,
implication, bi-implication and universal quantification; these can of course be defined in terms of the symbols
for disjunction, negation and existential quantification.

31

-II

uncontrollable. In BDI, events are always actions by the agent himself and branches in time-

trees are therefore choices for the agent'. Rao and Georgeff distinguish between primitive

events and non-primitive events. Primitive events are actions directly performable by an agent,

mapping to an adjacent point in time. Non-primitive events map to non-adjacent points in

time. These allow the designer to model the partial nature of plans.
An agent's actions can fail or succeed. succeeds(e) is true if event e has the expected

effect when executed in the next time-step, fails(e) is true when e does not have the expected

effect when executed in the next time-step and does(e) is true when e is executed the next

time step, regardless of its outcome. succeeded(e), failed(e) and done(e) have the same

meaning, but then for the previous time-step. The formulas BEL(), GOAL(q') and

INTEND(q') mean that the agent believes qi is true, has the goal to make qi true and has the

intention to make qi true respectively. BEL(qi) is true in a situation if and only if q, is true in

every belief-accessible world of that situation. The same holds for GOAL(q') and INTEND(qi)

and goal-accessible worlds and intention-accessible worlds respectively. Finally, optional4o)

is true at a point in time if path formula q, is true along at least one of the paths emanating

from this point and inevitable((o) is true if path formula qi is true along every path emanating

from this point (inevitable4o) Edf 'optional(''ço)).
State formulas are also path formulas. If a state formula is true at every point on a

certain path, it is true as a path formula along that path. Until-formulas can express path

formulas of the form "çoj will be true until q becomes true" (ço, U qi). A statement of the

form (>.pj expresses the fact that çoj will eventually become true. The formula oqi, says that çoj

will be true at the next point in time and Dxpj means that ço, will be true from now on.

Def2.21 aninterpretationM= <W, E, T, -<, U, , I, V>

W set of worlds
E set of primitive event types
T set of time points
-< binary relation on time points
U universe of discourse
'B mapping of current situation (w,) to its belief-accessible worlds

more formally: (B WX TX W

ç maps current situation to its goal-accessible worlds (works like ()

I maps current situation to its intention-accessible worlds (works like B)

V maps elements in Uto truth values for any situation w,

w, situation; a world WE W at time point IE T

Def 2.22 A world (time tree) WE W is a tuple <it, A, £, F>

Tc T the set of time points in world w

fic_-< only defined for the members of'1
function mapping pairs of adjacent time points to primitive events

more formally: £: (7 X '7 -* E

S tells the agent in what situation he will be if event e is successful

works like
'F tells the agent in what situation he will be if event e is not successful

'In the example depicted in Figure 2.3, we did not obey this constraint however.

32

-j

Definitions 2.21 and 2.22 define part of the semantics for the BDI architecture. We refer to
[Rao and Georgeff 1991] for the entire description of the semantics. The part of BDI that is
particularly useful to our project is the way it handles time series and events.

2.4.3 The BOlD architecture

Another popular approach to reasoning about mental attitudes is the BOlD architecture
[Broersen et al. 2002]. We treat this study, because BOlD is relatively easy to comprehend
and it stands closer to practical application than BDI'. In the BOlD archtecture, intentions are
generated from the interaction between beliefs, obligations and desires. It therefore has much
in common with the BDI architecture (BOLD is BDI plus obligations). These mental attitudes
were chosen for their intuitive nature and the useful agent types they result in. Both BDI and
BOlD use binary representations and they handle conflicting knowledge in more or less the
same way. However, the BDI architecture uses a monotonic logic where mental attitudes are
not conditional in nature. The BOLD architecture considers mental attitudes to be conditional
and depending on context. It uses a non-monotonic logic based on Reiter's default logic
[Reiter 1980] (much like QDT). Both BDI and BOlD take into account the side effects of an
action. If an agent desires to go to the beach and if a side-effect of going to the beach would
be losing one's job, he will not actually intend to go to the beach.

Jan Broersen and his colleagues use a strong overriding mechanism. This mechanism
is helpful for an agent because it will prune the search space during deliberation. For example,
an agent should have his beliefs override his desires, making sure that he will not desire things
that seem impossible to achieve. The order in which the four mental attitudes (beliefs,
obligations, intentions and desires) override each other determines the type of the agent. One
of the more useful agent types is the social realistic agent. In such an agent, obligations
override desires (social) and beliefs override desires (realistic). We refer to [Broersen et al.
2002] for an overview of the different agent types in the BOlD architecture.

The objective for BDI agents and BOlD agents alike is to determine appropriate
intentions. Beliefs are generated while observing the world as well as communicating and
learning. These are then used to make sure that no desires and obligations are adopted that are
inconsistent with what the agent believes. At this point the agent has a set of desires and
obligations. These can be inconsistent, so the agent has to determine a consistent subset of this
desire/obligation set and turn it into the set of intentions. Obligations are an interesting
extension for at least two reasons. First of all, obligation is a natural mental attitude within a
group of agents. The term obligation is often associated with social norms. Furthermore, the
distinction between desires and an obligations makes it possible to consider one of them to be
superior to the other, yielding selfish or social agents.

Figure 2.1 is the graphical equivalent of Figure 2.4 (taken from [Broersen et al. 20021).
First, a priority function p is selected. Then the agent enters an infinite loop. One iteration
through the infinite loop proceeds as follows. The agent stores his observations in Obs.
Together with the agent's beliefs, obligations, intentions, desires and priority function, it will
generate the candidate goal sets (default extensions) and store them in S. Then S is fed to the
module that selects a good goal set (bounded rationality) and generates a set of plans to satis1'
the formulas in this goal set. Finally, all information is updated and another iteration begins.

The BDI architecture has been implemented successfully several times, but the architecture itself is extremely
theoretical in nature. One might say that the gap between theoiy and practice is wider than with BOlD.

33

select p;
repeat
Obs := read environment;
S := generate candidate goal sets(Obs, B, 0, I, D, p);
P := select goal set and generate plans (S);
update(B, 0, I, D, p, P);

until forever

Figure 2.4. Deliberation and means-end reasoning loop in BOlD at a high level of
description.

Broersen et a!. use a language with a finite number of propositions and an agent's mental
attitudes are conditionals (just like in QDT). Arguably this is a pro for the BOlD architecture.
In [Broersen et al. 2002] technical details are kept to a minimum. For this paper, they made
the assumption that extensions are sets of literals. No complex formulas are allowed.

Mental attitudes are maintained in a set of propositions of the form a —X—÷ b with X E
(B, 0, I, D) meaning that if a is true, the agent has mental attitude X toward b. More
precisely, in the case of obligation for example, a .—O-—* b means that if the agent has a as a
goal, it feels obliged to also adopt b as a goal. The priority of the four different types of rules
depends on the type of the agent. a —X-- b is not a solid implication. Instead, it states that a is
a necessary, but not sufficient condition for b. Other rules can prevent the rule from firing.

Default logic [Reiter 1980] takes care of this non-monotonic reasoning by deriving
extensions. This reasoning mechanism poses a consistency constraint on the modus ponens
rule. Furthermore it introduces non-determinism into the BOlD architecture. The order in
which the applicable default rules fire can be chosen at random or by a priority function p. In
practice, not all extensions are calculated. When the agent has used a certain amount of
resources, it will stop and return the best result it has come up with so far (bounded rationality
[Simon 1987]).

In BOlD, prioritized default logic is used: The defaults with the highest priority fire
first. The priority function p maps every rule in the set B u 0 of o D to an integer,
indicating its priority. In different agents, the four different types of rules can have different
values assigned to them, leading to differences in behaviour. In a social realistic agent for
example, beliefs always have a higher priority than obligations and obligations always have a
higher priority than desires: p(a —B— b) > p(c —0--- d) and p(e .-0---+J) > p(g .-D-— h) for
every a, b, c, d, e, f g and h. In our opinion, this is not the best way of modelling a social
realistic agent, we think it is too extreme. Even an agent that is highly social should still
prioritize his most important desires over his least important obligations. Fortunately, p can be
specified any way we want, so this behaviour would not be hard to achieve in the BOIl)
architecture. Goal generation in BOlD is only efficient if every rule has a unique priority
value. How to optimize the procedure for the more general case is still an open problem.
Finally, it is easy to see how p can facilitate learning. In QDT, shifts in the priority and
normality ordering as well as the injection of new information into them change the agent's
behaviour. In BOIl), reassigning rule-priority leads to adaptive behaviour.

In the goal selection procedure, the extensions are chosen at random or subjected to a
priority function, just like the default rules are prioritized in the goal generation procedure.
This gives rise to even more different types of agents than we already had from the priority
order of B 000 I o D. An agent could be persistent in the sense that it has a preference for
extensions that show resemblance with the extensions that he chose before. He could also be
of the conservative type, meaning that he will choose an extension that looks like the current
state of affairs. The conservative type is also an economic one, because little changes usually
means low costs.

34

U'

If an agent cannot construct a feasible plan to reach the chosen extension, he chooses a
different extension to pursue. The preconditions and effects of actions and action sequences
are stored in belief-rules. Actions that have made it through the planning module are stored as
intentions. Recall from Section 2.3 that Boutilier distinguishes between controllables,
influencables and uncontrollables. Broersen and his colleagues make more or less the same
distinction. Furthermore, an agent should take into account the side-effects of his actions.
After observation, goal generation and goal selection, the agent's mental attitudes are updated.
The changes that are made, alter the agent's behaviour. [Broersen Ct al. 2002] contains a short
but impressive description of the dynamic capabilities of the BOlD architecture.

2.4.4 Collective Intentions

We conclude Section 2.4 with a short review of another study that extends the BDI
architecture: [Dunin-Kçplicz and Verbrugge 2002]. We treat this study, because it focuses on
teams of agents, whereas QDT, BDI and BOlD are mostly concerned with the behaviour of a
single agent. Barbara Dunin-Keplicz and Rineke Verbrugge define a team as a group of
agents that have a common intended goal which they achieve by cooperating and assisting
each other. They also characterize formally what it means for a team to have a collective
intention. There is more to it than just having the same intentions. For sake of simplicity, they
leave out the notion of time. Their full theory does include time however. It can handle either
a linear time frame like in [Cohen and Levesque 1990] or a branching time frame like in [Rao
and Georgeff 1991].

In this study, rationality rather than psychological soundness is pursued. There is a
common agreement that intentions play an important role in rational decision making: They
drive means-end reasoning, they constrain future deliberation and they influence future
behaviour. [Rao and Georgeff 1991] presents us with a theory for rational BDI-agent
behaviour. However, in case of a team of agents with collective intentions, things can get
much more complicated. [Dunin-Kçplicz and Verbrugge 2002] and its companion papers
extend the BDI-architecture with ways to handle this extra level of complexity. This
concludes our discussion of the literature on qualitative decision theory. We now turn to the
combination of QDT and BDI that we need for our own architecture.

2.5 Combining QDT and BDI

[Dastani et al. 2003] provides a comprehensive overview and comparison of the different
approaches to automatic decision making. Dastani and his colleagues start with a short
description of modem Bayesian decision theory or CDT. This description is similar to that of
[Doyle and Thomason 1999], which has already been treated in Section 2.1. Next, Dastani et
al. compare CDT to QDT. The main difference between the two approaches is that CDT uses
quantitative probabilities and utilities (real values between 0 and 1 for probabilities and
between -l and I for utilities) where QDT uses normality orderings and preference orderings
on possible worlds.

So CDT uses purely quantitative representations where QDT uses orderings on
clusters of possible worlds. BDI systems take the abstraction to the extreme, using binary
values to represent likelihood and preference. The consequence of this abstraction is that an
agent either believes something or not and it wants to make something true or not. There are
no gradations in between like in QDT. We are particularly interested in Rao and Georgeff's
combination of epistemic logic and time series using two sets of modal operators.

35

For our own architecture, QDT is combined with the notion of time used in BDI. We call this
new architecture QDT+. The combined model we end up with is both general purpose and
suitable for an adaptive diary assistant. We choose QDT as the basis for our model, because it
can reason about different levels of preferability and normality. BDI represents beliefs,
desires and intentions in a binary way. It lacks the power to distinguish between more than

two levels.
Our model consists of three modalities: P for preference, N for normality and T for

time. Information about an agent's preferences and normalities is represented in formulas of
the form I(BjA) and A => B respectively as defined in Definition 2.7. We can also compare
the preference or normality of two propositions directly using formulas of the form A p B

and A j,r B. These formulas are interpreted using Definition 2.8. The corresponding semantics
are linear orderings of clusters of possible worlds. These two modalities work exactly the
same, the only difference between them is how their meaning is interpreted. We adopt Pearl's
idea to use a bipolar ordering for preferences. Worlds can be relatively good to different
degrees, relatively bad to different degrees or neutral. A bipolar ordering for normalities does
not make sense.

Craig Boutilier's QDT theory gives reasoning about normalities a certain priority over
reasoning about preferences. First, the knowledge base is extended with its default
consequences. Then, the default closure of the knowledge base is used in the next reasoning
step, along with information about preferences. We agree with this order, therefore, we adopt
it in QDT+. An agent should first consider the uncontrollables before looking at the
controllables and influencables. That normality rules have priority over preferences can also
be seen from Definition 2.18.

Information about the third modality, time, is represented in formulas of the form A S
B as in Definition 2.8. It does not make sense to also introduce formulas for time of the form
described in Definition 2.7. The semantics for time-series are trees of possible worlds that
branch into the future. Reasoning about time is practically identical to the way it is done in
BDI. The most important difference is that we use one branching time-tree of possible worlds
where Rao and Georgeff use a set of possible worlds with belief, desire and intention-
accessible world relations between them, giving rise to a network of possible worlds. Each of
these worlds is a branching time-tree in itself with information about which propositions are
true at the nodes. We do not need this trees-in-a-network representation of BDI, because
beliefs, desires and intentions are represented in an altogether different way in our QDT+
architecture; as linear preference and normality orderings. In our QDT+ model, the
information that is stored in the branching time-tree is only used during learning. An agent
can predict the future by looking at the past. He derives new rules, leading to changes in the
preference and normality ordering.

36

The modality time serves to store the past states of the environment and the agents. It is not to
be confused with the way we represent dates and times in the diary. This is done using first
order predicates and should therefore not be interpreted as a modality at all. QDT uses
propositional logic. We use predicate logic (like BDI), because it forms an integral part of the
OutOfBrain language. Unconstrained predicate logic is fundamentally undecidable. However,
the use of a uniquely indexed database combined with a finite domain rectifies the use of
unconstrained predicate logic'. In combination with arithmetic, it is well suited for
representing times and dates in a diary system. Effectively, we are integrating quantitative
information into a qualitative framework here. This choice brings along some extra
complexity, especially when the number of values that variables can bind to is large. For some
thoughts on search complexity, see Section 3.1.7.

This concludes our treatment of the literature on qualitative decision theory. The next Chapter
is concerned with literature on graph rewriting and other topics.

Constrained predicate logics are sublanguages of unconstrained predicate logic. A popular constrained
predicate logic is description logic [Nardi and Brachman 2002]. In this language, only unary and binary
predicates are allowed. It is used for the semantic web in combination with OWL [Bander et al. 2003].

37

3 Literature on graph rewriting and other
topics
Our secondary focus while studying the literature is on existing graph rewriting techniques
and how these relate to the OutOfl3rain system (Section 3.1). The remainder of the current
Chapter covers some other interesting topics from literature. These topics however, are only
covered briefly, so as not to distract us from our main goals. Section 3.2 is about
communication between agents and how it aids in the construction of a cooperative team.
Section 3.3 provides some insight in the user modelling techniques at our disposal. Some
thoughts on learning in a qualitative decision architecture have already been dealt with in
Chapter 2, because in most cases, such an architecture is designed bearing the capability of
learning in mind. Finally, Section 3.4 minimally covers interface design. Cognitive
ergonomics is a whole different ballgame and we cannot get into it in detail in this Master's
thesis. However, we feel that the field should have some influence on every software-design
project.

3.1 Graph rewriting and OutOfBrain

Graph representations are used extensively in modelling techniques. The most popular
example of graph representations is arguably the universal modelling language (UML)
[Rumbaugh et al. 1998]. UML is the result of an enormous combined effort by a variety of
companies and research institutes. In 1997, version 1.1 of the modelling language was
released, resulting in a convenient standardization in the field of software design. It is also
used in other domains, most notably in hardware design, modelling business processes,
engineering, and organizational structures. An UML model can provide a team of developers
with a common frame of reference. Another popular type of graphical representations, one
that is especially suited for artificial intelligence, is the semantic network.

Graph representations are less popular at the implementation level for several reasons.
We will explain these reasons shortly. Despite this unpopularity, the graph rewriting
community does not give up that easily. It is only a matter of time and effort before a graph
rewriting system for implementation will emerge that can do most of the things a textual
programming environment can do. We expect that such a graph rewriting system will be
especially successful in hybrid settings. Some functionality cannot be implemented in graphs
conveniently, so we would have to rely on textual programming languages there. OutOfl3rain,
currently under development at Rockingstone, will be such a system. One of this project's
goals is to test and improve the current version of OutOfBrain during the development of an
adaptive diary assistant.

38

Section 3.1.1 introduces graph rewriting as a programming language and Sections 3.1.2 and
3.1.3 summarize the different approaches in the field. There are many possibilities and it is
not clear which approach is the best one. It also depends of course on the task at hand.
Sections 3.1 .4 and 3.1.5 introduce another type of graphical programming called coloured
Perri nets. In Section 3.1.6, we present the basics of OutOfBrain so that we can compare it to
other graph rewriting techniques and coloured Petri nets in Section 3.1.7. Finally, we devote
some attention to the formal properties of OutOfBrain, also in Section 3.1.7. In order to do
this, we borrow some results from literature on graph rewriting techniques that resemble
OutOfBrain.

3.1.1 Introduction to graph rewriting

A graph rewriting system consists of a host graph and a set of rewrite rules. In the context of
multiagent systems, the host graph is a representation of the world, whereas the rewrite rules
are descriptions of how the world can change due to actions by the agents and other events. A
comprehensible way of looking at these graphs is as sets of logical formulas. The host graph
corresponds to a set of logical facts and the graph rewrite rules are the implications that
operate on these facts.

Terminology is far from standardized in the field of graph rewriting. A clear
terminology is given in [Blostein et al. 1995]. It is represented in a graphical example in
Figure 3.1. There are many variations in graph rewriting. However, they all follow the same
basic mechanism. A control module picks rewrite rules one by one, either at random or
according to some ordering function. Once a rule has been chosen, the control module will
search the host graph for a matching subgraph. If it finds one, the rule will fire as shown in
Fiure 3.1. The rule g, —. g replaces all occurrences of gi in the host graph with gr. Subgraph

gj St
is isomorphic to gj, so it is transformed into gr"°', which is isomorphic to gr. What it

means exactly for two (sub)graphs to be isomorphic depends on which graph rewriting
variation is used. We will get into these differences in the next Section. The edges marked
with asterisks are called pre-embedding edges and the ones that are marked with hash
symbols are called post-embedding edges. Note that in Figure 3.1 there is one post-embedding
edge for every pre-embedding edge, but this is not generally the case. We now turn to a
classification of existing graph rewriting techniques.

3.1.2 Variations in graph rewriting mechanisms

The most obvious way of classif'ing graph rewriting mechanisms is by analysing which types
of graphs are allowed. The nodes in a graph can have labels or not. The same holds for the
edges between the nodes. Furthermore, in most graph representations directed edges are used,
but undirected edges are also possible. With undirected edges, the system cannot distinguish
between for example R(a, b) and R(b, a). Some graph rewriting mechanisms allow for node
attributes. These can be data fields of any complex type. All these variations are universal
machines, but it should be clear that graphs without labels or node attributes cannot be used in
practice for complex modelling. The distinction between simple and complex graph rewrite
mechanisms resembles the distinction between machine language and high level
programming languages.

39

gI—,gI

LI LII

Figure 3.1: Graphical representation of the graph rewriting ontology used in [Blostein et al.
1995]. The graph rewrite rule gi — g replaces all occurrences of gi in the host graph with g,..
Graph g is an appropriate host graph, because g/b031

is isomorphic to gi. Graph h is the
corresponding result graph, because g!b051 is isomorphic to g. Asterisks in g indicate pre-
embedding edges, hashes in h indicate post-embedding edges.

In [Blostein et al. 1995] graph rewriting mechanisms are also classified according to their
gluing method. Each graph rewrite rule has to provide embedding information, either
explicitly or implicitly. When a rule matches a subgraph of the host graph isomorphic to
gi, is removed (Fi,ure 3.1). This leads to dangling edges. These pre-embedding edges (that
used to connect gi Os: to RestGraph) are now dangling in space, having lost their from-node or
to-node'. These edges have to be connected to the correct nodes in g/bOst (the substitution for
the removed subgraph g/05f)• This process leads to new connections called post-embedding
edges.

The form of graph rewriting depicted in Figure 3.1 uses an implicit gluing method. It
derives implicitly which nodes in gr have to inherit connections from the nodes in g/05t It
does this by analysing the shape of both subgraphs. A node in g1h05t with the same relative
position as a node in g/05t inherits all connections from it. This is why the graph rewriting
mechanism in Figure 3.1 does not need explicit embedding infonnation. Most graph rewriting
mechanisms do need it however. Instead of looking at the physical locations of the nodes,
these mechanisms only analyse what connections a node has and how the nodes and edges are

'Graph rewriting lingo for the node that the edge starts from and the node that the edge points to respectively.

40

labelled. Thus, the system needs no information whatsoever about the graphical layout of the
graphs. The graphical representations are only of interest to the designer, i.e. they improve
usability. The problem with implicit embedding, based on physical locations, is that the
system has to be aware of the relative positions of the nodes as well as the connections they
have with other nodes. This increases search times dramatically. Implicit embedding is
therefore not the most popular approach. A disadvantage of explicit embedding though is the
occurrence of unexpected matches. In Figure 3.1, if the system would not analyse the physical
locations of the nodes, at least two more subgraphs of g would match the rule. This problem
can be solved quite easily by adding labels to the nodes in order to distinguish them from one
another. To allow for node and edge labels also increases search times, but we need the labels
anyway for convenient representations of logic formulas. Subgraph isomorphism determines
when a rule finds a match in a host graph in cases where embedding information is implicit,
i.e. based on the physical locations of the nodes. But when embedding information is explicit,
the term general morphism is used. These two morphisms can also be combined by indicating
for each rule whether it should use subgraph isomorphism or general morphism.

Choosing an appropriate explicit embedding mechanism can involve a trade-off
between ending up with many simple rules or just a few complex ones. If the specification of
the embedding information is unrestricted, the graph rewrite rules can get highly complex, but
only a few are needed. This makes sense, because a single rule can have high expressive
power if no constrains are imposed on it. The host graph can be altered in a profound way by
applying just one rule, where restricted embedding mechanisms would need the application of
several rules. However, unrestricted methods lead to a high search complexity. Furthermore,
the highly constrained gluing methods have the strongest mathematical basis. The key is to
find the right balance between modelling power and formal properties like worst case time
complexity, the existence of useful mathematical theorems and proofs about the integrity of a
database. What follows is an overview of constrained gluing methods in increasing order of
complexity, taken from [Blostein et al. 1995].

Constraints leading to better formal properties
The first constraint (leading to lower complexity and stronger mathematical basis) is

preservation of orientation and label. For each post-embedding edge there has to be a pre-
embedding edge that has the same orientation and label. This comes down to the fact that after
the removal of the dangling edges cannot be removed, they have to be reconnected to

New edges can still be added though. The second constraint that can be posed on the
gluing method (leading to lower complexity and stronger mathematical basis) is called
depthl. Here, the post-embedding edges can only point to or start from the nodes in
RestGraph that are direct neighbours of g,.OSt• To know which nodes are the direct neighbours,
the system has to be aware of the geographic locations of the nodes.

Constraints on the allowed gluing steps can easily be combined. For example, the
constraint simple is preservation of orientation and label combined with depth 1. Another
combined constraint is called elementary. It combines simple with the additional constraint
that the gluing cannot depend on the labels of nodes in RestGraph. The preconditions of the
rewrite rules are not allowed to contain information about these labels. Analogous is the same
as elementary, again with an extra constraint added. It says that the gluing cannot depend on
the orientation and labels of pre-embedding edges. All that is left for specifying preconditions
then, are the nodes in g/10M, their labels, the edges and labels between them and the edges that
connect them to RestOraph without orientation or label information. The last constraint
presented here is called invariant. It says that there has to be exactly one post-embedding
edge for each pre-embedding edge.

41

Another source of variation in rewrite mechanisms is which priority function they use on the
rewrite rules. They can be chosen at random to check for rule applicability, reflecting non-
deterministic behaviour, but they can also be ordered in several ways. Learning this ordering
presents an interesting way of achieving adaptive behaviour. The designer can also determine
what should happen when two or more subgraphs of g match the gi of a rule. Should one of
them be chosen at random or according to some ordering function? And what should happen
when the first matching subgraph has been transformed? Should the rule transform the other
matching subgraphs as well, or should the system continue with checking the next rule for
applicability?

Yet another source of diversity is whether there are external application conditions.
Graph rewriting can be used in hybrid systems, so it should be possible for external
components to impose extra preconditions on graph rewrite rules, in addition to the
preconditions of the rule itself. The last source of diversity we put forward here is the use of
attribute transfer functions. Recall that in some graph rewriting systems, nodes are allowed to
contain complex data fields. If a rule fires, this data can be manipulated. Such node attributes
make for better structuring facilities. However, the expressive power does not change; a
universal machine is a universal machine, whether complex data is represented in the node
attributes or in the graph structures.

The variations in allowed types of graphs and gluing methods, the rule ordering and
whether or not there are external application conditions and attribute transfer functions
provides us with a wide variety of mechanisms. The best choice depends on the problem at
hand, the availability of appropriate tools and the tastes of the designer.

3.1.3 Choosing a rewrite mechanism

Many factors have to be considered when choosing a rewrite mechanism for implementation.
It should be clear that the invariant gluing method is inconvenient for many common rewrite
operations. But surely, the unconstrained method would yield an unacceptable worst case time
complexity and a profound lack of mathematical basis'. Generally, designers choose a
mechanism that is somewhere in the middle. They find it easier to express transitions using
more rules than strictly necessary, because it makes the system easier to understand and it
yields better formal properties.

In theory, the graphical representations used in graph rewriting make for a good
manageability for the programmer. In practice however, this is only true for small programs.
Graph rewriting is not good at scaling up what it can do in simple situations. This is due to the
simple fact that good tools for graph rewriting have not yet been developed. A serious attempt
to create such tools is the environment PROGRES and of course the environment we work in:
OutOfBrain. While these two projects make a good effort, much work remains to be done. An
important feature that these and other tools are lacking is modularity. Object oriented
programming has achieved an inviolable status in the world of computer science during the
last two decades. Therefore it is clear (to us and to Dorothea Blostein and her colleagues) that
the modular architecture of object oriented programming should also be incorporated into
graph rewriting for it to be successful. Especially in large software projects, modularity and
reusability are essential. The same holds for good editing tools. A programmer using graph
rewriting should be able to work with several tabs, collapsing and expanding subgraphs,

'OutOfBrain does not pose many constraints on gluing. The reason this does not lead to complexity problems is
the smart database that operates in the background. In this database, each node has a unique identifier besides its
label. These identifiers speed up searching for matching subgraphs substantially.

42

search options, zooming facilities and much more1. Both PROGRES and OutOfBrain do not
yet have all these features installed. The development of good tools for OutOfBrain will form
an important part of Rockingstone's future work.

3.1.4 Coloured Petn nets

There is another graphical programming technique that deserves some attention. Carl Adam
Petri is the father of the paradigm that is known as low-level Petri nets today. We treat some
literature on Petri nets, because we want to develop a rich view of existing graphical
programming techniques. Invented in 1962, Petri nets have had considerable influence on the
field of parallel computing. Systems are described in diagrams of ellipses called interface
places and circles called internal places. They correspond to the possible states of the system.
Several of these can be active simultaneously. Possible actions are represented as rectangles
called transitions. The arrows connecting these components are called arcs. Each arc is
associated with an arc expression, which describes how the state of the system changes. A
Petri net can be used to describe the synchronisation of concurrent processes.

[Jensen 1992] is the first volume of a book that covers many aspects of coloured Petri
nets in depth, from theoretical foundations to practical use. Coloured Petri nets extend low-
level Petri nets with the power of programming languages. In coloured Petri nets, each place
has a set of tokens that can be of any complex data type, whereas in low-level Petri nets, the
places contain no information whatsoever. Kurt Jensen compares coloured Petri nets with
higJ level programming languages and low-level Petri nets with assembly code. They have
the same expressive power, but in practice, coloured Petri nets are capable of modelling more
complex systems, because they have better structuring facilities, like types and modules. The
same comparison can be drawn between low-level Petri nets and graph rewriting without node
attributes on the one hand and coloured Petri nets and graph rewriting with attributes on the
other hand (see Section 3.1.2). However, where low-level Petri nets are considered to be
inferior to coloured Petri nets, this does not hold for graph rewriting with and without node
attributes. Fairly complex systems can be modelled in graph rewriting, even without node
attributes. This is because graph rewriting mechanisms without node attributes still have node
and edge labels to store information in.

First there were only a few "colours" allowed in coloured Petri nets, but the Petri net
research community soon realised that data in the places could be of arbitrary complexity,
even entire arrays of data with many different data types are allowed. It is due to this fact that
coloured Petri nets are capable of modelling colossal industrial processes.

When executed, a coloured Petri net begins in some initial place and starts checking if
any transitions match. In order to have a match, the place has to possess tokens that match the
types of the variables in the arc expression that leads from the place to the transition. If so, the
transition occurs and the data in the initial place moves (i.e. binds) to the variables in the arc
expression and the transition is said to be enabled. From the transition rectangle, the
algorithm will look for matching edges again. Some or all of the data is transferred to the arc
expressions of an arc leaving the transition. This process continues, possibly forever. When
two or more matches occur from a place or transition, the activation will branch. Coloured
Petri nets can therefore be viewed as some form of multi-state machine, making them highly
suitable for MAS and concurrent, distributed processes in general.

The use of different colours for example is already incorporated into OutOfBrain. It is one of the features that
improves usability greatly.

43

3.1.5 Coloured Petri nets in MAS

[Weyns and Holvoet 2004] is a study that utilizes the power of coloured Petri nets in a MAS.
They construct a coloured Petri net for a simple domain with two agents known as the packet
world. The domain was first introduced by Huhns and Stephens in 1999 as a research topic for
investigating sociality in MAS. From [Weyns and Holvoet 2004] it is easy to see that
coloured Petri nets would also do a good job modelling much more complex systems with any
number of agents, due to their modularity.

The packet world consists of a two-dimensional grid with two types of packets
distributed randomly on it. Furthermore, there are two identical agents with a limited view of
the world and two goal-squares, one for each type of object. The agents have to pick up the
objects and deliver them to the appropriate goal one by one. One set of experiments is
conducted with communication and another set without communication 1. The results are
compared to find out whether communication increases performance. The measure of
performance is a simple counter that increments whenever an agent makes a step, picks up a
packet or puts one down. The task is done when all objects have been delivered to their goal-
squares. Actions are not always successful; two agents can try to pick up the same packet
simultaneously or try to step to the same square. In such cases, only one of the agents will
succeed. Uncertainty over the outcomes of actions is one of the reasons why the packet world
is a good research topic for studying MAS. A real world example of uncertainty over action
outcomes is the unreliability of communication channels.

Figure 3.2 provides an object-level view of the entire system presented in [Weyns and
Holvoet 2004]. It consists of five separate coloured Petri nets that can interchange data
through interface places (ovals). These work much like the interfaces of objects in object
oriented programming. An interface place is simply a data storage that copies its content to all
interface places with the same name in other Petri nets. For sake of simplicity only one
interface place is drawn per data interchange channel. The five nets represent the
environment, agent 1, agent 2, the synchronization module and the postal service. How these
nets work internally is beyond the scope of this thesis, for the full version of the Petri net for
the packet world we refer to [Weyns and Holvoet 2004]. We can say however, that their
internal mechanism resembles object oriented programming with methods inside objects
dividing the work and passing parameters to each other. The power of coloured Petri nets
becomes apparent when used in parallel computing. They can be viewed as multi-state
machines. Each net can be in several states (places) simultaneously and a system consists of
several nets that can all be active at the same time.

The interaction between the five different nets goes somewhat like this. First, both
agents have to perceive the world. They do this by reading out the data at interface places i4
and i5 respectively. The internal mechanisms in each agent deduce which action they should
perform, given the observation of the environment. For example, if a packet is in view, the
agent should step toward it if it is not yet holding one. Before the agents choose an action,
they communicate to gain information about the invisible part of the environment and to make
sure they will not get in each other's way. Via interface places i2 and i3 the agents can send
and receive messages to and fro. All messages pass through the postal service to ensure that
everything goes according to plan. i.e. messages could get corrupted on the communication
channel and an agent should not be able to send a message when the postal service is busy
passing a message toward him.

In the experiments without communication, the agents communicate implicitly by making changes to the world
that the other agent can perceive. Where exactly the border lies between implicit and explicit communication is
not clear. It is a source of much debate in the field of robotics.

44

Figure 3.2: Object-level representation of the packet world. We focus on the interfaces
between the Petri nets, leaving out representations of the internal mechanics. Ovals are
interface places, taking care of data transfers between the five different nets. Circles are
internal places and rectangles are transitions. We refrain from depicting actual data in this

figure for sake of simplicity.

After observation, communication and reasoning, an action is chosen by each agent. The
environment reads out data about which actions the agents try to perform through interface
places 14 and i5. It checks whether the actions are successful and sends back the results for the
agents to consume. The synchronisation module ensures via ii and i6 that all activities are
properly closed off before another cycle of observation, communication, reasoning, action and
result consumption is initiated.

The results Weyns and Holvoet present prove that communication does indeed
increase performance in the packet world in terms of energy consumption by the agents. They
also feel that the results can be generalized to more complex tasks. This feeling is supported
by experimental results from other studies, e.g. [Stone and Veloso 2000]. It indicates that
agents in a community need communication in order to perform well. A significant increase in
performance only occurs when the agents can perceive just a small part of the environment.
This makes sense, because situations in which agents cannot choose a good action from their
own observations occur more often when visibility is bad. For example, agent 1 could be
holding a packet already. He could then tell agent 2 (provided they can see each other) that a
packet is present to the east, beyond the visible reach of agent 2.

45

Synchronization module

Results from experiments with and without communication are compared. This approach can
also be found in [Stone and Veloso 2000]. Here, a similar experimental setup is used; the
predator-prey domain, first introduced by Benda et al. in 1986. Stone and Veloso start out
with a set of homogeneous agents without communication skills. Then they make the agents
ever more sophisticated, first adding heterogeneity and communication separately and then
adding them both. Just like in [Weyns and Holvoet 2004], the more sophisticated the agents
are, the better they perform.
Weyns and Holvoet conclude the paper with some strong statements. First of all, they state
that coloured Petri nets have expressive graphical representations with good structuring
facilities. Secondly, they are claimed to be suitable for modelling concurrent processes with
communication channels and for modelling MAS as well. Thirdly, the authors point out that
their DesignICPN tool can prove that every finite packet-world has a correct solution in a
limited number of steps. We can only agree with these conclusions, given the clarity and
validity of their paper.

3.1.6 Introduction to the OutOfBrain system

Now that we have a clear picture of existing ways of graphical programming, we can turn our
attention to the OutOiBrain system. Although OutOfBrain did not originate from graph
rewriting or coloured Petri nets, they do have a lot in common. Moreover, the way knowledge
is represented in OutOfBrain reminds us of semantic networks and the way an OutOffirain
programmer has to think shows some resemblance with the PROLOG way of thinking. In
other words, OutOfBrain is a fusion of many popular techniques from the field of artificial
intelligence and computer science.

Figure 3.3 shows the OutOfl3rain equivalent of the rewrite rule application in Figure 3.1. The
top part is the rewrite rule and the bottom parts are the host graph and the result graph. The
node labelled <process> indicates that the rewrite rule is a separate process that operates in
parallel with other processes. The one labelled <implication> tells the OutOfBrain interpreter
that we are dealing with a rewrite rule. It has both a <premise> edge and a <conclusion> edge,
pointing to the subgraph to search for and the subgraph to replace it with respectively. The
<group> labels are necessary to indicate which nodes are part of these subgraphs.
Finally, the <transition> edges contain embedding information. They indicate which nodes in
the result graph correspond to which ones in the host graph, so that the replaced parts can be
glued in place appropriately. Figure 3.1 describes a mechanism that uses geographical gluing.
It derives which nodes in the result graph correspond to which in the host graph from their
geographical location. OutOfl3rain uses explicit gluing, thus it does not need to know the
geographical locations of the nodes. With explicit gluing, subgraphs match easier, because
their geography does not need to be identical. This can work to the programmer's advantage,
but it can also lead to unexpected matches. Without the use of labels, the rewrite rule in
Figure 3.3 would have found three matching subgraphs instead of just one. The OutOfBrain
manual can be found in Appendix A. It contains descriptions of all predefined labels, as well
as documentation on how to use extra features like preferences, normalities and arithmetic.

46

-J

< **> I

__

(S1

•' 9O

One might wonder why OutOfBrain uses a graphical tool for implementation while most
other programming languages use textual representations. Indeed, for object-oriented
programming, text is much more convenient a medium than graphical representations.
However, OutOfBrain is not an object-oriented programming language. The choice of the
graph as universal data-structure' practically implied the use of a graphical implementation
tool. It provides the programmer with a good overview of the entire graph. Textual
representations of graphs would not.

OutOfBrain's universal data-structure for artificial intelligence applications is based on a context-dependant
hierarchy. Unlike semantic networks, OutOfBrain does not determine the hierarchical properties of an object,
until the context is given.

47

Figure 3.3: OutOJBrain version of Figure 3.1. On screen, djfferent types of nodes and edges
are depicted in different colours to improve usability. Above is the actual rewrite rule, below
are the host graph (left) and result graph (right). Note the use of labels to make sure that the
rewrite rule does not match any other subgraphs.

The current version of OutOfBrain offers only central control. All rewrite rules and host
graphs are represented in a single file. A version that can handle geographically distributed

control is currently under development. Developers, human agents and software agents will

soon be able to work together using OutOfBrain, even when they are located on different
continents. For the current project, we simulate distributedness by posing restrictions on what
data the agents can access. The agents have to communicate in order to receive information
from one another. After this short introduction to the OutOfBrain system, it is time to
compare it to the graphical programming methods described in Sections 3.1.1 through 3.1.5.

3.1.7 Relating OutOfBrain to other graph rewriting systems and Petri nets

Now that we have some knowledge of what goes on in the field of graphical programming,
we can try to give OutOfBrain a place in this larger picture. Although OutOfBrain did not
originate from existing graph rewriting techniques or Petri nets, we argue that it has a lot in
common with both.

Comparison to graph rewriting
In Figure 3.1 we presented a graphical representation of general graph rewriting according to
[Blostein et al. 1995]. All commonly accepted graph rewriting techniques fit this description.
In Figure 3.3 we showed that this is also the case for OutOfBrain. This is good news, because
it allows us to draw upon results from the field of graph rewriting. Of course, we cannot
simply say that everything that holds for graph rewriting also holds for OutOiBrain. As stated
before, the programming language that is being developed at Rockingstone did not originate
from graph rewriting. Furthermore, there are many forms of graph rewriting. All with
different properties. Thus, we have to be careful when drawing analogies.

In OutOfBrain, gluing information has to be stated explicitly in the form of 'transition'
edges between nodes in the g, and the gr of a rewrite rule (see Appendix A, 5.6). When
comparing OutOfBrain to other graph rewriting mechanisms, it turns out that OutOfBrain is
relatively unconstrained. Normally, this would lead to poor formal properties (Section 3.1.2).
General subgraph isomorphism (searching for applicable rewrite rules) is a well known NP-
complete problem [Andries et al. 1999]. However, since the search engine uses a database that
includes a unique index for each node, search times are decreased considerably. Note that
worst-case time-complexity is still intractable. It is the average time complexity that becomes
workable thanks to the database approach. Space-complexity suffers from the database
approach, but since time-complexity is the bottle-neck in most cases, this is acceptable. In
combination with a finite domain, the use of unique indices leads to tractable solutions.

OutOfBrain utilizes another clever hack to increase its speed. Each node in a rewrite
rule has a number of candidate nodes in the host graph. The simplest way to check a rewrite
rule's applicability is to check all permutations of the set of nodes in the rule's precondition
for applicability in random order. However, this approach definitely yields an exponential
worst-case time-complexity (O(c") where n is the total number of nodes in the host graph).
Hence, it is better to use some search heuristic instead of random applicability checks. The
idea is to check the node with the least candidates first. In most settings, nodes that have
labels and many connections with other nodes are apt to have less candidate nodes in the host
graph. This is because they are more specific than unlabelled nodes (wildcards) with less or
no edges. This idea can shrink search-trees considerably. However, just like with the idea of
uniquely indexed databases, worst-case time-complexity remains the same. It is the average
time-complexity that improves. The current version of OutOfBrain uses depth-first search for

48

-J

subgraph isomorphism', but future versions will utilize a more sophisticated algorithm that
combines depth-first with breadth-first search. See [Russell and Norvig 1995] for an overview
of existing search algorithms.

Comparison to Petri nets
When examining the literature on Petri nets, we soon found that it does not have a lot in
common with graph rewriting. Both are graphical programming languages, but that is where
the similarity ends. However, we did find studying Petri nets useful for the following reason.
Coloured Petri nets are a form of parallel processes. Since rewrite rules in OutOfBrain are
organized in parallel processes as well, the global structures of the two systems show great
resemblance. In graph rewriting, rewrite rules are not necessarily organized in parallel
processes, so on a global level of description, OutOfBrain is closer to Petri nets than to graph
rewriting.

3.2 Communication between agents

One of the goals of this project is to develop a better understanding of sociality in MAS. We
agree with [Stone and Veloso 20001 that social skills are necessary in any MAS application
that is at least moderately complex. It is due to this goal that we choose an approach where a
team of agents has to communicate in order to work together, althougl such an approach is
not the best choice from an engineering point of view. As stated before, the agents are not
geographically distributed. Instead, we simulate distributedness by posing constraints on the
agents' accessible data. After all, because of our research goals, we want to create a system
that is as close to true MAS as possible.

The Foundation for Intelligent Physical Agents (FIPA)2 is a committee that develops
standards for MAS. FIPA was founded in 1996 and memberships include several academic
institutions as well as a number of companies. Due to lack of commercial support, it was
transformed to an IEEE standards committee in 2005. The only standard developed by FIPA
that was widely adopted by the research and business community is their Agent
Communication Language (FIPA-ACL) [FIPA 2001].

This formal language relies on speech act theory which was developed by John Searle
in the sixties [Searle 1969]. His theory was inspired by the work of John Austin and it was
enhanced in the 70s by Terry Winograd and Fernando Flores. The main idea behind speech
acts is that utterances of language have intentions associated with them. They can do more
than just making factual assertions. When I ask someone a question for example, I intend to
receive the correct answer. This is why utterances can be seen as a subclass of motor actions
instead ofjust a tool for asserting facts.

The components of a message in FIPA-ACL can be divided into three parts:
performative, content and housekeeping [Wooldridge 2002]. The performative contains
information about the intention of the sender (e.g. request, inform), the content holds the
information that is actually grounded in the environment and housekeeping information
ensures a correct transfer and interpretation (i.e. sender, receiver, language and ontology).

The content and performative together determine what an agent is trying to say. The
content "the door is closed" for example will be interpreted differently when the performative

'Depth-first search is possible because the depth of the search-tree is known and finite. It is determined by the
size of the subgraph that needs to be checked for applicability.
2 The name FIPA suggests that it is a foundation that aids the development of physical robots. However, FIPA
has never devoted much attention to the physical aspects of agents.

49

is changed. If the content is accompanied by the performative "inform", the message becomes
"The door is closed." But if the performative is "request", it will be interpreted as "Could you
close the door?" There are many more predefined performatives and designers can also
introduce new ones, although this is not encouraged by the FIPA committee. The sender and
receiver attributes make sure that message transfers go according to plan. Finally, the
language and ontology of a message ensure an appropriate interpretation of the content and a
common frame of reference (symbol grounding) respectively.

3.3 User modelling

The general consensus about learning in the field of artificial intelligence is that it is

absolutely necessary as soon as domains become moderately complex [Stone and Veloso
2000]. In most domains it is simply impossible to hard-code everything at design-time. An
intelligent computer program has to be able to learn from experience during run-time. Instead
of thoroughly studying the literature on user modelling, we draw upon our own knowledge of
learning mechanisms.

As stated before, learning in QDT+ amounts to the addition, deletion and
augmentation of facts, undefeasibles, preferences and normalities. The latter two in turn lead
to reordering possible world clusters as well as the injection of new information into them.
The adaptation skills of the diary assistant can use several sources of information. First of all,
there is the dialogue with the user. New facts, undefeasibles, preferences and normalities can
be derived from the dialogue in numerous ways. Also, old ones can be removed or
augmented.

An important tool for this type of learning is the punishment or reward from the user.
When new rules about the user and the environment have been discovered, the diary assistant
can ask the user if the new information is correct (explicit learning). Furthermore, whenever
the team of agents has come up with an action, they could first ask for the user's confirmation.
If he or she is not satisfied with the proposed action, the underlying argument should be
punished (explicitly), leading to the deletion or augmentation of rules. If on the other hand the
user agrees with the proposed action, the argument should be rewarded. In this mode of
learning, we have to deal with the credit assignment problem. The dialogue with the user can
help the system to find out which part of an argument is truly responsible for the user's
judgement.

An altogether different mode of learning takes place through the analysis of the user's
behaviour. Again, possible results are the creation, deletion or augmentation of facts,
undefeasibles, preferences and normalities. The longer our diary assistant analyses the user's
behaviour, the better it can estimate what the planning of a typical day or week should look
like. This is a comfortable mode of learning, because it is implicit. The tuning of parameters
such as the user's energy per day or the desired number of items on the todo-list is also done
by statistical analysis. A source of information that is used for both statistical analysis and
qualitative learning techniques is the master-apprentice metaphor. When the user is
controlling the diary and todo-list manually, the user-agent can watch his or her every action
and learns.

The histories of the OutOfBrain graphs can be saved. These histories can be monitored
constantly. When a sequence of subgraphs has occurred several times, an agent can construct
a rule that captures the sequence and offer the new rule to the user in a convenient form, so
that he or she can confirm or reject it. This mode of learning is inspired by ACT-R's
production compilation [Taatgen and Lee 2003]. ACT-R is well suited for integration into
QDT, because both are inspired by cognition and because they are both largely symbolic.

50

-4

The last mode of learning we would like to put forward here is the derivation of absent item-
attributes. In some cases, the system can fill in certain information on its own. The amount of
information per item the user needs to specify should decrease during usage thanks to user
modelling. The diary assistant could learn that certain activities are fun or important and
others are not. Hard-coded derivations are also possible: e.g. urgency should increase when a
deadline is close and movability of an item should decrease if there are other people involved.
This concludes the introduction of possible learning modes. The final Section of the current
Chapter discusses the control and display components of our adaptive diary assistant. While
designing the interface, we again draw mainly upon our own knowledge.

3.4 Interface design

As computers take on an ever increasing role in our daily lives, the need for user-friendly
interfaces is greater than ever. Human-computer interaction is currently one of the fastest
growing disciplines, both in science and in business. One of the most interesting examples
thereof is the ambient intelligence movement described in [Aarts and Marzano 2003].
According to the ambient intelligence philosophy the era of houses infested with grey and
black boxes is over. Devices should be integrated in the environment and the user should play
a more central role. Aarts and Marzano also plead for simple but intelligent interfaces that
change to fit the user's needs. This plea is backed by many other researchers (e.g. [Rich
1999]). Displays should not contain inappropriate information and controls that are not used
should be hidden. We do not have the intention of creating a perfect interface. Instead, we try
to utilize the knowledge on interface design that is already at our disposal.

3.4.1 Control components

We intend to use a conversational text-interface to control the diary assistant. We are aware of
the fact that a proper conversation text-interface like the ones used in modem chatbots
requires extensive natural language processing. Since this is not one of our research topics, we
choose to only allow a language with a formal syntax instead of natural language.
Furthermore, we support text-input with other forms of control, because this makes for a more
convenient interface. If only text were allowed, users would have to memorize a lot of
commands. These other forms of control could be anything from radio-buttons to slides. In
our design, we rely on our own factual knowledge. Rockingstone has a lot of experience with
developing database applications, which is also a welcome source of knowledge for interface
design.

3.4.2 Display components

Just like the controls, the display components should be as simple as possible while still being
able to display all the necessary information. To achieve this, some information needs to be
hidden. This can be done by using drop-boxes. Furthermore, the contents of the display
should be user-dependent, but it should not be infinitely dynamic, because users also look for
a certain stable factor in the interface [Rich 1999]. Available options and user-specific domain
information are typical display components that can be determined dynamically. The position
of buttons on the other hand, should not change. This concludes our brief discussion of the
interface for now. We pick it up again in Section 4.7.

51

4 Design
From the literature covered in Chapter 2, we construct the combined architecture QDT+ that
is as general purpose as possible while being fit for the particular application we have in
mind: an adaptive diary assistant. We want to be able to reason about time, preference and
normality in one and the same framework. QDT provides linear preference and normality
orderings, while BDI gives us time structures that branch into the future and are linear in the
past.

In Section 4.1, we briefly introduce the QDT+ model and logic. We also show that we need
the advantages of qualitative decision theory described in Section 2.2. The adaptive diary
assistant is composed of seven parts; three agents and four parts of the environment. Section
4.2 explains these seven parts and their interrelations. A worked example of how to determine
goal worlds from preference and normality rules is presented in Section 4.3. In Section 4.4,
we finally arrive at describing the diary assistant's methods and data. The techniques we use
for communication and learning are explained in Sections 4.5 and 4.6 respectively. Finally,
Section 4.7 presents the user interface of the diary assistant.

4.1 Introduction to QDT+

In an adaptive diary assistant, agents have to be able to reason about time. In particular, they
need to make statements about the dates and times in the diary. As already explained in
Section 2.5, we do not use modal logic for this. Instead, we choose to represent dates and
times using first-order predicates in combination with arithmetic. This is a great tool to define
complex statements about dates and times like "later today", "somewhere next week" or
"every weekend". However, we do use a modality for time in a different matter. The histories
of the environment and the agents are stored so that the agents can learn from the past and
predict the future. The way we handle reasoning about the past and future of the system (as
opposed to the dates and times in the diary) is practically identical to the way it is done in the
BDI architecture.

The agents also need to formulate their preference and normality orderings toward
possible worlds for the following reasons. Defeasibility is necessary, because new knowledge
comes in constantly through input from the user and communication between the different
agents. There is a reasonable amount of uncertainty, especially when trying to model the user
in a QDT+ agent. Complexity considerations are also important, since we have three
modalities for each agent and an environment that is reasonably complex. Quantitative
methods would not do well in such a complex environment. In fact, they would probably yield
intractable solutions: worst case time complexity and average time complexity would be too
high.

52

We compare the diary environment to the real world using the classification dimensions from
[Russell and Norvig 1995]. Complexity is not as great as in the real world, because the diary
environment is discrete and relatively simple. Nonetheless, it is a dynamic world, the different
agents do not have full access to it, and non-determinism can probably not be fWly eliminated.
These are more than enough reasons to choose qualitative methods and they are also good
motivations for choosing an architecture like QDT, BDI or a combination thereof that has a
high level of expressive power. To summarize, we end up with three modalities: preference,
normality and time. These modalities can be combined in complex formulas and they operate
upon normal predicates and arithmetic-predicates representing events, dates and times.

4.2 Applying the QDT+ model to a diary assistant

In Section 2.5 we have shown that QDT [Boutilier 1994] and BDI [Rao and Georgeff 1991]
can be combined without problems. Mehdi Dastani and his colleagues have studied both
architectures extensively and they have come to the conclusion that QDT and BDI are likely
to be fully compatible [Dastani et al. 2003]. Designers can take the parts they need from BDI
and QDT and combine them into a new architecture and possible worlds model that fits the
task at hand. In this section we will present a QDT model and logic extended with the time
component from BDI. This approach of adding parts of BDI to QDT is exactly the suggestion
Dastani and his colleagues made in their 2003 paper. (They also state that taking BDI as a
starting point and extending it with QDT components is another possibility.)

However intuitive the distinction between desires and intentions provided by [Rao and
Georgeff 1991], we do not need it. Boutilier's preference orderings serve much the same
function and they provide the possibility for many levels of desirability instead of just two
(desire and intention). In Boutilier's approach, the cluster of worlds with the highest
desirability (the one that is at the bottom of the preference ordering) becomes an intention.

The concept of obligations [Broersen et al. 2002] seems a useful addition to our
model, because the agents reason about appointments and todo-items. However, we have
chosen not to incorporate this concept for two reasons. First, we want to come up with a
design that obeys Occam's razor: the model should be as simple as possible. Second, we feel
that obligations are so fundamental in a diary environment, that it would be best to consider
every proposition on the diary as an obligation, thus rendering the introduction of a new
concept obsolete.

4.2.1 The agents and their environment

A QDT+ model M = <W, V' consists of a set of possible words Wand a valuation function V
that assigns truth values to predicates in possible worlds. The elements of Ware of the form w
= (d, t, dch, tch) where d stands for diary, t stands for todo-list and dch and ich are the diary
conversation history and todo conversation history respectively. When the human user
communicates with the adaptive diary assistant, messages are being passed from user-agent to
diary-agent and back. These messages are the content of the diary conversation history.
Communication with the todo-agent is stored in the todo conversation history.

Our set of agents operating on this model is A = (da, Ia, ua). Agent da is the diary-
agent, ta is the todo-agent and isa is the user-agent. Only the user-agent has a dynamic
knowledge base. However, the other two agents can still derive new information about the
user and the world around him or her. In fact, they can discover things that the user-agent
could never discover, because they have access to different parts of the environment and their

53

own, unique inner mechanisms. The only difference is that new information found by the
diary-agent or todo-agent is sent to the user-agent, so that he can put it in his knowledge base.
When learning comes into the picture, the agents need the modality time (7) to express events
in the past and the future. The complete set of orderings of all agents is therefore
0 = I.

For the possible worlds semantics of these orderings, we refer back to Sections 2.3 and
2.4. It is important to realize that the dates and times in the diary itself are not represented in
T. Instead they are formalized in arithmetic-predicates. Figure 4.1 shows how the agents can
interact with each other and with the environment (possible worlds). All three agents have the
ability to communicate with the other two agents. Among other things, they can query each
other for information and they can send requests to execute a certain action. The most
important aspect of a multiagent team is that the members have different capabilities. In
particular they have access and control over different parts of the environment. The user-agent
models the human user, therefore he should have access and control over more or less the
same parts of the environment as the human user'.

His scope of information-access covers the current view of the diary window and todo
window as well as the most recent entries in both dialogue histories (say five or six). Along
with the history of his own inner mechanisms, these are exactly the parts of the environment
of which the histories are stored by the user-agent and that can consequently be used by him
for learning. This means that the user-agent does not have access to the entire diary and todo-
list. There is simply too much information for a human being to remember2. Instead, the user-
agent (who mimics the human user) relies on the diary-agent and todo-agent to provide him
with information.

The user-agent has limited control over the system as well. He can only add an entry
to one of the conversation histories. The user can also control the diary and todo-list directly,
without taking the team of agents into the loop, but then, the system is controlled by the
human user directly. The user-agent remains passive. The diary-agent has access to the diary
and the entire diary conversation history. He can have control over the environment by adding
an entry to the diary conversation history and by adding an entry to the diary itself. The todo-
agent operates much the same way, having access to the todo-list and the todo conversation
history. He has control over the todo-list and its conversation history.

4.2.2 Reasoning about the past

The agents and the environment are actually complete histories (7). The agents need these
histories for their learning mechanisms. We are aiming at a user-agent that mimics the human
user, so one might say that the histories he has access to should not remain in memory
forever. This is a source of debate however. The human user cannot produce the entire history
on demand, but when he or she is presented with a particular situation, the user will probably
remember that it has occurred before. In humans, this priming effect is quite strong; people
remember more than they know. The implicit memories just have to be triggered somehow

This resemblance between user-agent and user is hard to achieve since the human user can perform active
perception. The search for information can be guided by controlling the interface (e.g. changing days in the
diary). For the user-agent to be a good reflection of the human user, we need to design methods for active
perception as well.

There may be hundreds of items on the diary and the todo-list. Each item has a number of attributes (e.g.
deadline, amount of fun and location). It should be obvious that a normal person can never remember all these
items and their attributes. After all, that is why we use diaries and todo-lists.

54

[Roediger 1990]. Making the entire conversation history available to the user-agent's learning
mechanisms is therefore justified.

However, as mentioned above, only the last couple of entries in the conversation are
available to the user-agent during normal reasoning. The histories of the diary and todo-list
are harder to remember, even with priming effects, because of the nature of the information in
there. It is concerned with times, dates and attribute settings that a normal user and therefore
the user-agent cannot remember. To retain biological plausibility, they have to rely on the
diary-agent and todo-agent to supply this kind of information or facts and rules derived from
it.

Figure 4.1: Overview of the information flows between the seven parts of the system. Dashed
arrows indicate communication channels, solid lines stand for perception and action. The
ovals that represent the data that the user-agent can perceive and act upon are dashed,
because the human user can only see the information in the diary that is currently on display.
Furthermore, he or she can only remember the last parts of the conversations. However,
during learning, the user does have access to the entire conversation histories, due to priming
effects. Also note that all three agents can perform actions on the conversation histories only
by adding utterances to the end of them.

In the time series, each time step is an entire graph representing an agent or a part of the
environment. The agents use this information about the past to make predictions about the
future and to learn which inferences are valid for this particular user and which are not. To
some extent, we also have to keep track of time branches that were not followed, because the
agents can learn from those as well. A large amount of data is stored while maintaining these
histories, therefore we have to use an efficient storing mechanism that only keeps track of the
differences between two consecutive graphs. For OutOfBrain's search algorithm this is no
problem, because from outside the database it looks as if the graphs are stored in their
entirety.

55

4.2.3 Cooperation strategies

It is time to make explicit the cooperation strategies used by the three agents. The user-agent
mimics the user. There is one conversational text-interface through which both the diary-agent
and the todo-agent communicate with the user-agent (and the human user). When the user
wants to manipulate the diary, the user-agent starts communicating with the diary-agent,
because he wants him to do something for him (e.g. add an entry to the diary). Similarly,
when the user wants to control the todo-list, the user-agent will initiate a conversation with
the todo-agent. Note that the user can also manipulate the diary and todo-list manually. In this
case, the team of agents is not involved.

The user-agent should have the same goals and beliefs as the human user. Over time,
their mental attitudes will show more and more resemblance. Consider for example, the times
of the week that the user wants to be free or how much energy the user has on a typical
Wednesday. The diary-agent will make sure that there is no overlap between diary-items.
Furthermore, he should have as a general goal that the user-agent and thus the human user
achieves his goals. The todo-agent also has this general goal. Furthermore, he has the goal to
minimize the size of the todo-list.

The knowledge bases of diary-agent and todo-agent are static. However, they do
provide the user-agent with information to facilitate his learning mechanisms. When the user-
agent needs to view a certain part of the diary or todo-list, he can just request the appropriate
information from one of the other agents. The diary-agent and the todo-agent can also
communicate their findings about the preferences and normalities of the user derived from the
changes in diary, todo-list and conversation history. The diary-agent and todo-agent are
autonomous, however it should be clear that the user-agent has a higher level of authority and
autonomy than the other two.

4.3 Applying the QDT+ logic to a worked example

Now that the model for our diary assistant team has been made explicit, we can turn to the
concretization of the corresponding logic. As stated before, the logic we use for our team of
agents is based firmly on QDT (Section 2.3). The qualitative decision architecture BDI has
been criticized as not having much practical relevance [Rao and Georgeff 1995]. However,
this critique has been countered by several successful implementations of the BDI
architecture: PRS, dMARS, JACK, JAM, Jadex, AgentSpeak(L), 3APL, Dribble and Coo-
BDI. In our study of the literature, we have not found such implementations for the QDT
architecture. There have been some attempts to implement QDT, but BDI is notably more
popular for practical use. The reason for this is probably that BDI instead of QDT is
considered to be the state of the art in qualitative decision theory. QDT has different
expressive powers than BDI. First of all, QDT can distinguish between more than two levels
of desirability. Whether this is a good thing depends on the situation at hand. Second, QDT
uses a non-monotonic logic which is surely an advantage in most domains. Finally, it lacks
the modality time which is of course a drawback of QDT.

We agree that BDI has higher biological plausibility than QDT, but from an
engineering point of view, we argue that QDT might be a more convenient theory, especially
when it is complemented with BDI's way of expressing time. It should therefore not be
abandoned just yet. Our design of QDT+ could show that QDT is in fact quite suitable for
practical use, just like BDI.

56

4.3.1 Example: the umbrella problem

We have tested the practical usability of QDT by analysing some toy-problems. The examples
in [Boutilier 1994] provided us with a clear picture of how the architecture works. However,
Boutilier's work does not specify how exactly preference and normality information should
be combined into the determination of goal worlds. The easiest way to do this is by means of
a qualitative version of the maximization of expected utility (see Section 2.1). We claim that
the method described below yields the same results in many cases as Boutilier's apparatus for
calculating action set dominance (Definition 2.18).

Consider the situation (based on Boutilier's example) where I have just heard the
weather forecast. The weatherman said that the sky will probably be overcast: T 0.
However, I have missed the part where he says whether it will rain or not. Now, let us assume
that from previous experience, I know that when the sky is overcast, it will probably rain: 0

R. After consulting this knowledge, along with the preference for taking an umbrella when
it is raining, I(U1R), I should decide to grab an umbrella before I go outside. I also know that
when the sky is clear, it probably will not rain: —0 => —R. Furthermore, I prefer not to take an
umbrella when it is not raining: I(— U —'R). The decision tree that corresponds to this situation
is depicted in Figure 4.2 with solid lines representing my actions (U and -'U) and dashed lines
representing uninfluencables (0, 'O, R and -'R).

It is important to realise that normalities are concerned with the uninfluencables and
preferences are about the agent's actions. [Boutilier 1994] does not state explicitly how
normalities and preferences should be combined into a measure of utility. However, he does
say that an agent should first determine all default consequences of his knowledge base (using
normality rules) and then reason with this information as if it were true, along with available
preference information in order to determine the goal world. In most complex situations, a
path in a tree of events consists of interchanging actions and influencables. To show how an
agent could determine a goal world in such situations, we return to our example described
above.

4.3.2 Possible worlds and their expected utility

There are 2 = 8 possible worlds in this simple example. These possible worlds can be ordered
according to their likelihood and preferability. Table 4.1 contains all information about which
normality rules are satisfied or violated by the possible worlds. In the rightmost column, the
normality ranks of the worlds are indicated. Table 4.2 does the same for preference rules.
When we combine the normality rank and preference rank into a measure of expected utility
by multiplying their normality and preference rank, we immediately see that world w1 is our
goal world. It has an expected utility rank of util_rank(wj) = norm_rank(wj) . pref_rank(wi)
= I * I = I.

57

(

()

—0 '

'S

Figure 4.2: Decision tree for the overcast-rain-umbrella example. Dashed lines are
uninfluencables, solid lines are actions1. The utility of the eight different worlds can be
determined using the available normalities and preferences.

Table 4.1: Calculation of each world's normality rank
violation of the available normality rules.

world # I('UlR) I(-' Ui -'R) preference rank

WI 'I 1

W2 x 2

w3 2

W4 4
'V5 '1 1

'V6 x 2

W7 2

,V8 'I 1

Table 4.2: Calculation of each world's preference rank
violation of the available normality rules.

'The tree suggests that the agent chooses whether or not to take an umbrella after the uninfluencables overcast
and rain have happened. However, the agent does not have knowledge about the truth or falsity of R.

58

world # T = 0 0 R -'0 -'R normality rank

WI I I 1

W2 I "1 1

W3 "I 2

W4 'J x 2

w5 x 3

W6 x x 3

w7 -1 2

W8 X 'I 2

from the satisfaction, neutrality or

from the satisfaction, neutrality or

world # normality rank preference rank expected utility rank

Wi 1 1 1

w2 1 2 2

W3 2 2 4

W4 2 1 2

W5 3 1 3

W6 3 2 5(6)'
W7 2 2 4

W8 2 1 2

Table 4.3: Calculation of each world's expected utility rank from its normality rank and
preference rank.

4.3.3 Summation over possible outcomes

When we examine the classical equation for the expected utility of an action (Section 2.1), we
see that it sums over the possible outcomes of an action to handle uncertainty. In the example
above, this is not the case. However, we can augment the problem so that it fits the classical
equation. Consider the situation where an agent has to decide whether or not to take an
umbrella and he knows that the sky is overcast. However, the agent does not know that it will
probably rain when the sky is overcast or that it should stay dry when the sky is sunny. Figure
4.2 can be reduced to only its upper half in this situation.

The set of possible worlds W consists of only 22 = 4 elements: ((R U), (R -'U), (-'R
U), (-'R, -'U)). The truth of R is not influencable, which corresponds to the fact that the
outcomes of the actions does(U) and does(—'U) are uncertain2. The expected utility of these
two actions can be calculated as follows. First, we need to recalculate the normality rank and
preference rank. Because we have already devoted considerable attention to how ranks are
calculated from statements of the form I(BIA) and A B, we will not go through this process
again for this example. We simply provide the ranks directly in Table 4.4. After done (U) , the

agent can be in either w1 or W3. After done(—'U), the agent can be in either w2 or w4.

The expected utility of does (U) is:
utilrank(does(U)) =
util_rank(wj) + util_rank(w3) =
norm_rank(wj) * pref_rank(wj) + norm_rank(w3) * pref_rank(w3) =

1 * I + 2 • I = 3.

The expected utility rank of does('U) is:
util_rank(does (-'U)) =
utilrank(w2) + util_rank(w4) =
norm rank(w2) . pref_rank(w2) + norm_rank(w4) e pref_rank(w4) =
1.2+2.1 =4.

The agent will decide to take his umbrella with him.

Because we are dealing with ranks, there should never be gaps between them (between 4 and 6 in this case).
After the expected utility ranks have been calculated, they gravitate towards 1. That is how ranks work, every
integer in the range from I to the lowest rank (5 in this example) must be occupied.
2 We refer to Section 2.4 for the intended interpretation of these formulas.

59

world # normality rank preference rank expected utility rank

WI 1 1 1

W2 1 2 2
W3 2 1 2
W4 2 1 2

Taole 4. 4. Calculation of expected utility in the new situation: The sky is overcast, but there is
no knowledge about the consequences thereof It could either rain or stay dry, the agent has
to consider both to calculate utility.

Note that this example greatly resembles the prisoners dilemma. Taking an umbrella or not is
equivalent to cooperating or defecting. Whether it is raining or not is analogous to the
opponent's choice to cooperate or defect. One can draw the analogy even further, to the
iterated prisoners dilemma. Previous outcomes can be used to guide the current choice. For
example, if it was raining this morning, it will probably be raining at noon as well. This
analogy shows once again that, despite its simplicity, the iterated prisoners dilemma can teach
us a great deal about rational agent behaviour.

4.3.4 Rule priority

The power of this qualitative version of expected utility measurement becomes apparent in
complex domains, where both normality ranks and preference ranks on possible worlds can
have many levels. In such domains, the method comes up with a single goal world in most
cases without ever associating rules (of the form I(BIA) and A B) with ranks or real values,
thus reducing the complexity and increasing the intuitiveness of the system. Each rule is
equally important. This is no problem as long as the agents have enough information about
the domain. There should be a complex network of rules influencing each other's
applicability.

However, it is easy to imagine domains where some rules are more important than
others. The association of rules with ranks or real values could be necessary in such domains
in order to decide which actions to perform. We plead for the use of only a few ranks instead
of integers or real values to maintain the qualitative nature of QDT+. Recall from Section
2.4.3 that the BOLD architecture uses a prioritized default logic. Rules can be of different
types and depending on what kind of agent we need, certain types have priority over others.
Social agents for example, give priority to obligations over desires. Obligations are therefore
selected first and they can easily prevent desires from firing. We can do the same in QDT
(statically and/or dynamically). Some preference rules could be labelled as "like to", others as
"love to". Normality rules can be divided into two groups in the same way by labelling them
as "maybe" and "probably". More than two groups can be used if necessary.

There are three normalities at the agent's disposal (Table 4.2). From our own common
sense we know that the rule 'O => 'R is more likely than 0 R. This is not reflected in
our example, because the rules do not have ranks or real values associated with them.
Likewise, I(U1R) should be more important than I('U'R). Apparently, we could need ranks
on rules after all. Therefore, we keep the possibility to do so open in the design of QDT+. We
refrain from using BOLD's prioritized default logic however, as long as we do not encounter
undesirable equilibria in goal world determination. Priorities over rules make for a less
qualitative architecture with increased complexity and decreased intuitiveness. Furthermore,
when there are many rules influencing each other, an equilibrium could be a true equilibrium
and we simply should not distinguish between the fitness levels of the winning worlds.

60

4.3.5 Some thoughts on qualitativity and complex formulas

Now, this qualitative version of Savage's classical decision theory might seem a little ad hoc
at first. Is it not just a quantitative method with integers instead of real values? We argue that
it is not. Boutilier's QDT logic ranks possible worlds according to their relative preference
and normality. We bind integers to the different clusters of possible worlds in order to
combine the orderings into a single utility ordering as described above. The number of levels
however, is finite and in most cases quite small compared to the entire range of the integers.
The disadvantages of quantitative decision theory discussed in Section 2.2 do not apply, or at
least less so, to the method discussed above. The method is of course of a less qualitative
nature than BDI, because of the different levels of preferability and normality. This leads to a
reduction of non-deterministic decisions. Where a BDI-agent often has to choose between two
worlds that are equally good, a QDT-agent can distinguish between the utility of these worlds
due to different levels of preferability and normality. Whether or not this is a good thing
depends on the situation at hand.

Before we turn to the adaptive diary assistant itself, we need to discuss one more issue.
We do not allow for combined preference/normality formulas like I(BIA) 1(C) within a
single agent. Instead, we depend on the calculation of utility described above to link
preference and normality information. After considering many examples, we came to the
conclusion that it is highly unlikely that we need such combined formulas. Besides, combined
formulas do not occur in [Boutilier 1994] either. The reason we do not need them is that
preferences are always about the consequences of the actions of agents, whereas normalities
are concerned with uninfluencables. This strict division is also apparent in Figure 4.2.

Only when agents are reasoning about each other, these combined formulas could
occur. An agent can have a preference for another agent to have a certain normality rule for
example'. The three agents are truly autonomous, they can even have conflicts. For instance,
the user-agent modelling a lazy user could have preferences expressing his or her dislike for
busy days. However, the static diary-agent always has rules that indicate his preference for
doing things as soon as humanly possible. The agents should discuss this disagreement in
order to come up with reasonable compromises. This example emphasizes the advantage of a
team of agents over a single agent.

4.4 Designing the adaptive diary assistant

For the design and implementation of our diary assistant, we use an incremental strategy. We
start with a simple diary assistant that does not possess adaptation skills or advanced planning
capabilities. From there, we extend the system until we have something that behaves like a
personal planning assistant.

One of our secondary goals is to develop an electronic diary that offers a bit more than
existing diary systems. The first extension we propose is the capability of planning. The user
can invoke a reasoning process that returns the most urgent todo-item on the list. This process
uses the attributes of the todo-items to determine which one should be moved to the diary
first. These attributes are: importance, mental effort, physical effort, fun, type, subtype and
location. Furthermore, the system can generate a list of possible times and dates for todo-
items. And finally, the best suggestion will be chosen from this list using user specific
preference and normality rules.

The operators 1 and can be accompanied by subscripts indicating which agent's preference or normality

rule we are dealing with.

61

In order to obtain user specific information, we need learning processes. Consequently, the
second extension we propose is adaptation. Opportunities for learning are abundant in the
planning of one's appointments and obligations. Knowledge of the real world can be used to
improve adaptability. For example, the diary assistant could be aware of the geographic
locations of the user's office and home, so that it can bear in mind travel times during
planning. An exhaustive list of these learning opportunities will be given in Section 4.6.

4.4.1 Preview of the diary assistant's functionality

Before we turn to a detailed model of the entire system, we preview part of its functionality in
Figure 4.3 to get a feel for the way things work in OutOfBrain. The part of the system we
have chosen for this preview is the planning of todo-items. For sake of simplicity, we do not
yet incorporate user modelling into the preview. The planning of todo-items takes place when
an item does not have a date and time specified or if the proposed date and time lead to a
conflict. The diary-agent has to search the diary for alternative dates and times where the
pending todo-item would fit. After this process, reasoning takes place to determine which
alternative is the best. This topic will be treated later, along with other planning functionality
and adaptation skills.

Four processes explained
An OutOfBrain program is essentially a collection of parallel processes. Like in most
implementations of parallel processes, parallelism is simulated on a serial machine. Fairness
is guaranteed: all processes will try to fire periodically. In the real application, there are only
three processes, one for each agent. The reason for this choice will be treated in Section 6.2.
Consequently, the preview presented in Figure 4.3 is not an accurate reflection of the real
application. However, it does show how parallel processes are implemented in OutOfBrain.
Each node in Figure 4.3 is actually an implication (I) or condition (C) in OutOfBrain.

Process p is activated when it encounters an item in the request state. Next, a possible
reference edge from a previous item is removed and a new one is created, pointing to the
appropriate item. The next condition of pi checks whether the day the item should be placed
on is empty. If so, the state of the item is set to assign and the process ends and becomes
available for firing again. If not, the process has to check whether an overlap would occur if
the item were to be placed at the desired time. There can be two kinds of overlap: Either the
start time or the end time of the pending item (or both) are between start and end of an item
on the diary. Whenever one of these overlap checkers returns true, the item's state is set to
rejected. If both return false, the item state becomes assign. These checks could be done by a
single rule using the or-operator. However, OutOfBrain does not have an or-operator, because
such an operator does not fit the graph rewriting paradigm. This is of course inconvenient, but
OutOfBrain is still functionally complete.

The next two processes are quite simple. Process p2 is activated whenever it
encounters an item in the assign state. It then connects the item to the appropriate day.
Process p3 looks for items in the rejected state. Whenever it finds one, its state is set to
suggest and the item's duration is calculated from its start and end attribute for planning
purposes.

Finally, p. starts running when it finds an item in the suggest state. A possible old
reference is cleaned up and a new one is created. Then, the process will start searching for

62

alternative times for the item at nine o'clock in the morning of the desired day'. Then, the
process enters a loop: it will collect suggestions until it reaches five o'clock in the afternoon
or until it has collected ten suggestions. Nine o'clock is compared to the start time of the
items already linked to the day. If there is overlap, we jump to the end-time of the overlapping
diary-item and continue searching from there. If there is no overlap, a suggestion is added to
the todo-item, we jump half an hour, to nine thirty in this case, and continue the search2. This
concludes our preview of the adaptive diary assistant's functionality.

item slate = assign item
asstgn? to day

if item state rejected
item state suggest
calculate item duration

The diary assistant should also be able to make suggestions on other days, but for sake of simplicity, we
assume for now that the process only looks for alternatives on the day the item was originally supposed to be
added to.
2 There are situations where this method does not provide good suggestions. Suppose an overlap offive minutes
occurs. In this case, we should step back five minutes to yield a good suggestion. In the real application, the
agents have more advanced planning skills than in this preview.

63

Pt I

Item state
request?

clean up old create new
reference reference day empty?

item state —
assign

overlap I?

4I
itemm

suggeststate?

item state =
rejected

clean up old create new start suggesting
reference reference at 9:00 17:00?

item state -
suggested

overlap2? overlap 1? #suggestlons
10?

Figure 4.3. Part of the system 's basic functionality in four parallel processes. Process pi
checks whether the pending item fits at the specfled date and time. Process p2 assigns items
that fit to the appropriate day. Process p passes rejected items to process P4, which in turn
collects alternative dates and times for the item.

4.4.2 Overview of methods

The functionality of the seven components in Figure 4.1 should now be explained. There are
three agents and four environment parts. The preview given in Figure 4.3 explains part of the
functionality of the todo-agent. Each agent has different tasks and they have access to
different parts of the environment. Furthermore, we have an Item class and a Message class.
Figure 4.4 shows the three agents along with their methods and accessible data. The data-
classes Item and Message are treated in Figure 4.5.

It is important to keep in mind that the three agents are autonomous. They differ from
classical objects in the sense that they do not construct objects from each other's classes.
Neither do they call each other's methods. They can only communicate their desires through
messages. The receiving agent will decide for himself how he will act upon the sending
agent's message. Every message has a sender-attribute and a receiver-attribute. Therefore we
can add a blackboard to the design where all pending messages are collected. The three agents
check constantly whether there is a message for them on the blackboard. Even the commands
from the user are converted to FIPA-messages and then posted on the blackboard among the
other messages.

Interface

Diary-agent

Figure 4.4: The interface, the blackboard and the three agents along with their methods and
data-members.

64

User-agent

senalizeCommandO
deaenalizeMeasage()

chooseAlternitive(3
uustChoo,eftemToPut(J
addFormul$)
removeFormula()
augmentFormula()
updateAdditionallnfo()
requestPutltem()
messageHandki
infeulnfoO

Day currentDialy View
ltem[) currentTodoView
Message[x] daryConwrsationHead
Message(yJ todoConversationHead
Preference(J userPreferences
Nonnality[) userNormalities
Undefeasible[J userUndefeasibles
int[J[) distanceMatrix
Tree typeTree
Tree userEnergy
Normalityf J default Week

Todo-agent

f.ndAlternatives()
requestPutltem()
messageHandler()
inferlnfoO
sendlnfo()

Day(lOO)[7] dialy
MessageE] diaryConversationi-lisioty
Preferencef] diaiyPreferences
Normaiity[] diaiyNormalities
Undefeasiblefl diaiyUndefeasibles

chooaeltemToPutQ
requestPutltem()
messageHanWuO
inferlnfoo
sendlnfo()

Itemi] todoList
Message(] todoConversationHistoiy
Preference(J diaiyPreferences
Nonnality[] diatyNormalities
Undefeaaible{] todoUndefeasibles

Learning and interface communication
We start our guided tour througli the system at the user interface. Commands from the user
are converted to messages and then posted on the blackboard by the method
Interface.serializeCommandO. The receiver of each message is either the diary-agent or the
todo-agent, depending on the contents of the command. Whenever information should be
presented to the user, Interface.deserializeMessageO converts the message containing the
information to a command that invokes the display-components of the diary assistant.

Before we explain the processing of the three different types of items, we want to draw
the reader's attention to User-agent's methods addFormulaO, removeFormulaO and
augmentFormulaO. These methods should be called whenever new information about the user
or the world around him or her has been discovered. Since the user-agent is the only one that
learns, the other two do not possess such methods. They do however, check periodically if
they can find out something new about the user or the world so that this new information can
be sent to the user-agent. He will then add, remove or augment formulas that model the user.
The method updateAdditionallnfoO maintains the data-members distanceMatrix, type Tree,
userEnergy and default Week. These are explained in Section 4.6.

Processing diary-items
New items that have to be added to the diary or todo-list can be divided into three groups. The
first group consists of items that have a date and time associated with them that do not lead to
overlap on the diary. These can be added manually by the user. None of the three agents
intervenes with this form of manual control. After all, the user should still be able to control
his own diary. The method that takes care of this is not shown in Figure 4.4, because it is not
part of the multiagent system. Manual control is implemented in Delphi instead of
OutOfflrain, just like the interface. If the given date and time are already occupied, the user
receives a warning from the diary-agent. If the user decides that the diary-agent should do
something about the overlap, the item becomes part of the second group which consists of
items with a date and time that do not fit the current diary.

For each item in this second group, the diary-agent will construct a list of alternative
dates and times using Diary-agent findAlternativesO. Besides suggesting alternative dates and
times for the pending item, the diary-agent can suggest moving the items already on the diary
to make room for the new one. Of course, not all appointments can be moved, especially
when other people are involved.

The item and its list of alternative dates and times are presented to User-
agent.chooseAlternativeO which will choose the best date and time using the information in
the user model. The chosen alternative is then suggested to the human user. If the agents have
done their job properly, the user will accept the alternative. But if he or she rejects it, another
alternative has to be suggested. Now, from the user's reply and the possible dialogue
following it, other alternatives could also be removed from the list. Then, User-
agent.chooseAlternativeO is called again and the best remaining alternative is presented. This
process continues until the user agrees and the item can be placed on the diary.

Processing todo-items
The third item group consists of items that do not have their date and/or time specified. The
user wants the system to provide an appropriate date and/or time for such items. When such
items come in through the interface, they will be placed on the todo-list, along with their
specified attributes. Any one of the three agents can decide that it is time to move a todo-item
to the diary. The user-agent could decide this, because the human user gave a command to do
so. The diary-agent could decide that it is time, because the diary is relatively empty. Finally,

65

the todo-agent himself can decide to offer an item to the diary, because the todo-list has
become too long.

After the todo-agent receives such a request or decides for himself that it is time to
move an item to the diary, he will use the method Todo-agent.chooseltemToPut() to choose
the item that should be offered to the diary-agent. He does this by analysing the item's
attributes: fun, importance and deadline. These are explained in detail below. Before actually
offering the item, he will consult the user-agent. User-agent.assistChooseItemToPut and the
model of the user can help the todo-agent in making a choice that suits the user's preferences.
After this joint effort to choose the best todo-item, the diary-agent receives the item. He will
use its duration to search for gaps in the diary large enough to fit the item. The alternatives
are again selected by Diary-agent.findAlternatives() and the best alternative is again User-
agent. chooseAlternativeO.

The super-class Agent
The methods discussed so far make the agents unique. These methods are boldfaced in Figure
4.4. The remaining methods are the same for each agent. Therefore, they are methods of the
class Agent of which the three agents in Figure 4.4 are sub-classes. The first of these methods
is requestPutltemO. As mentioned above, any one of the three agents can decide that it is time
to move an item from the todo-list to the diary. The second method of the super-class Agent is
messageHandler. It analyses collected messages and puts the appropriate mechanisms in
motion. If a new message has to be put on the blackboard as a result of the collected message,
the messageHandlerO also takes care of that.

The third member of the class Agent is inferlnfoO. It constantly tries to derive new
information from the agent's knowledge base and available data. This could concern facts,
undefeasibles, preferences or normalities, but only about the user. The rules and facts about
the diary and todo-list are static. Since user-agent is the only one that learns, all newly
discovered information has to be sent to him, so that he can add, remove or augment the
appropriate formulas of the user model. The final method they inherit from the Agent class is
sendlnfoO. This one is called when either the diary-agent or the todo-agent has discovered
something about the user. The new information is sent to the user-agent so that he can add it
to his knowledge base, hopefully increasing his resemblance to the human user. The user-
agent does not inherit the sendlnfoO method. He has no use for it, because the other two
agents do not learn. See Sections 3.3 and 4.6 for some thoughts on learning techniques.

As stated in Section 3.1.3, OutOfBrain and other graph rewriting systems do not yet
possess modularity in the way that object-oriented programming languages do. Therefore,
inheritance is not an integral part of the architecture. It can, however, be simulated. Thinking
of the three agents as sub-classes of the super-class Agent aids us in the design process, even
though we do not use true inheritance.

4.4.3 Overview of data

Before we turn to the description of the chosen methods for communication and learning we
have to devote some attention to the data-members of the three agents. Below, we treat each
of the data-members occurring in Figure 4.4 in some detail.

User-agent
The user-agent has access to the current view of the diary and todo-list (currenzDiary View
and currentTodo View). He can also remember or see the last couple of entries in the
conversational text-interface (diaryConversationHead and todoConversationHead).

66

Determining exactly how much of the conversation history he should remember is tricky. As
can be seen from Figure 4.1, the conversation history is divided into two parts. One of them
contains the messages to and from the diary-agent, the other contains the ones to and from the
todo-agent. A straightforward choice would be for example to make the last six entries in both
parts available to the user-agent. But most of the time, the user is having a relatively long
conversation with one of the agents. Meanwhile, he or she forgets the previous conversation
with the other agent. For the user-agent to be a good representation of the human user, we
need to determine the available entries of the conversation histories dynamically.

The user-agent maintains a model of the human user in three separate arrays
(userPreferences, userNormalities and userUndefeasibles). We mentioned earlier that there is
a fourth kind of information, namely facts. These are also stored in the array of undefeasibles.
To model the user more accurately, the user-agent also has four data-members to store
additional information. First of all, there is the member distanceMatrix. It is the graph
equivalent of a two-dimensional array that contains the travel times between locations.
Secondly, there is the member type Tree. Here, the types and sub-types of the user's activities
are stored, so that the user can learn their typical attribute values (normality rules). The third
type of additional information in the user model is called userEnergy. It tells the user-agent
how much energy the user has on an average day. Finally, the user-agent maintains the data-
member default Week. Here, information is stored about the typical week for the user. It
includes normal work times and obligations that return every week. These should also be
treated as normality rules, because of their defeasible nature.

Item Message

string slate siring state
mid mt id
string content stnng performative
liii duration Object content
dateTime start string sender
datelime end string receiver
datelime deadline stnng language
string type string ontology
string subType
mt importance
mt mentalEffort
mt physicalEffort
mt fun
irit urgency
mt movable
boolean atomic
string location
string people

Figure 4.5 The data-classes Item and Message.

Diary-agent and Todo-agent
The diary-agent has access to the entire diary and its history. It represents about two years of
the user's life, moving along with the current date. The full history of messages that were sent
and received by him are also at his disposal. Furthermore, he maintains three knowledge
arrays of his own. These contain information about what are strict rules and preferable or
normal situations for a diary. The todo-agent's action and perception radius is similar to the
diary-agent's. He maintains the todo-list and has access to its history. Furthermore, he has
access to his own conversation history and three knowledge arrays.

Neither the knowledge arrays of the diary-agent or the todo-agent are subject to
learning. When one of them derives user-specific information from his conversation history
and diary/todo-list history, he sends it to the user-agent instead of storing it in his own

67

knowledge base. Many of the data-members in Figure 4.4 were especially designed for the
diary assistant. Two of these newly defined data-types, Item and Message, are quite complex.
They are explained in detail below (Figure 4.5). The remainder of these newly defined types,
Day, Preference, Normality and Undefeasible are just strings that obey certain constraints.
They do not require any further explanation.

Both the Item and the Message class have a state and an id (identifier). The state is
used to store information about the situation an item or message is in. For example, an item
can be waiting for alternative dates and times and a message can be waiting to be picked up
from the blackboard. The id makes for a convenient way of referencing.

The Item class
This class serves to represent todo-items and diary-items of many forms. Most attributes of
this class are optional. The user does not have to specif' everything; he or she can for
example add a todo-item without a deadline. First of all, there is the content of the item. This
variable can hold strings like "phone John" or "staff meeting". The duration, start, end and
deadline attributes represent the temporal aspects of an item. These are used during planning.
The diary-agent should apply preferences like "no suggestions beyond the deadline" and
"suggest alternative times close to the desired time of a conflicting item".

The todo-agent also utilises these temporal aspects. A todo-item that takes only fifteen
minutes for example will be moved to the diary before items with a long duration. The
attributes duration, deadline, importance, mentalEffort, physicalEffort and fun determine in a
weighted sum which todo-item (group three) will be sent to the diary first (urgency). We call
this a weighted sum, but the calculation is actually implemented using QDT-preferences. This
is the most important task of the todo-agent. Items that were rejected by the diary-agent due to
overlap in time (group two) are not sent to the todo-list. It is the responsibility of the diary-
agent assisted by the user-agent to suggest alternative dates and times for these items
immediately after rejection.

The type and subType of an item can be used by the team of agents to obtain
knowledge about the world and particularly about how the user likes to handle items of a
certain type or sub-type. These variables can have the obvious values work, household and
leisure, but also less obvious ones like administration and healthcare. Typical sub-types for
work are, among others, meeting, writing and reading. Leisure could be divided into sports
and relaxation. A diary assistant that is truly adaptive should have the ability to learn new
types and sub-types, because every user has different types of activities.

The attribute movable indicates the degree to which a diary-item is allowed to move in
time. This attribute is important when the diary-agent wants to shift items to make room for a
new one. The attribute atomic tells us whether or not an item can be split into parts. This
attribute is required when planning an item that takes many hours, writing a scientific paper
for example. The system can help the user plan such items by proposing possible divisions.
Finally, location and people hold information about where the activity takes place and with
whom. Our team of agents can commence a dialogue with the user to find out how long travel
times are between locations like home and office so that this can be used in planning.
Knowledge about people can also be utilized in planning. For example, it pays off to know
how flexible another person is in changing appointments. It is also worthwhile to remember
how reliable and important people are.

The Message class
All communication takes place through messages. It is the only way information can be
brought across. The performative indicates what type of message we are dealing with. In the
theory of speech acts, each utterance has an intended effect [Searle 19691. Possible effects

68

•1

include the activation of another agent's methods or the communication of requested
information. The attribute content contains the message itself. This can be a simple string, but
also an entire todo-item along with a list of possible dates and times for it. Different
performatives lead to a different interpretation of the content. A typical message from the
todo-agent to the diary-agent would be a request to put an item on the diary. "Request" is the
performative here, and the item with all its attributes form the content.

The sender and receiver attributes store the names of the agents involved in a message.
These attributes come in handy when agents check the blackboard for new messages or when
they are constructing messages themselves. Finally, the attributes language and ontology have
been introduced to ensure a common frame of reference for a group of agents. We could use
these attributes to guide the parsing of messages.

This concludes our discussion of the diary assistant's methods and data-members. The
following Sections shed some light on our ideas for communication, learning and interface
design. Then, we move on to Chapter 5, which is concerned with the implementation of the
adaptive diary assistant in OutOfBrain.

4.5 Methods for communication in a diary assistant

The interface, the different parts of the environment and the agents are strictly divided. For
the current application however, this is not really necessary. A single agent with access to the
entire environment could do the job just fine. In fact, an adaptive diary assistant with only one
agent would probably be easier to implement. In our design however, the agents cannot access
each other's data or methods. Instead, they have to cooperate via messages on the blackboard.
As stated before, the messages through which the agents communicate obey the FIPA
standard [Rumbaugh et al. 1989] (see Figure 4.5).

We have chosen this approach, because we are interested in true MAS. Recall that our
aim is not to develop a commercially interesting application. Instead, the diary assistant serves
as a test-bed for OutOfBrain and QDT+. True multiagent systems are by definition distributed
in space. OutOfBrain does not yet allow for spatial distribution, so we have to simulate it
instead. The main difference between this simulation of distributedness and real distribution is
that the three agents and the four parts of the environment are located on the same computer.
In fact, they are even in the same file. We only pretend that the agents cannot access each
other's data. We claim that from here, creating a true MAS would only be a matter of moving
the agents to different computers and setting up safe communication channels between them.

To provide some insight in the way communication is used in the adaptive diary
assistant, we focus on two of the many tasks of our multiagent team. The first is their main
task: planning todo-items. It can be divided into three subtasks: choosing the most urgent
todo-item, creating a list of possible dates and times for a todo-item and choosing the best
date and time from this list. The second task we treat here is maintaining the distance-matrix.
The user-agent uses this part of the user-model to store the locations of all items it encounters
and the travel times between them. The system can use the distance-matrix to make sure that
travel times between the locations of diary-items and the location of the todo-item are taken
into consideration when choosing possible dates and times for todo-items. Furthermore, the
distance-matrix can be used to minimize travel times during planning.

69

4.5.1 Communication during planning

The ability to move items from the todo-list to the diary is one of the most important factors
that distinguishes our diary assistant from existing ones. Figure 4.6 shows the information
flows required for this ability. Planning begins when one of the buttons on the interface is
pressed, indicated by a hash-symbol.

When this button is pressed, the interface sends a cJj, message (call for proposal) to the
todo-agent. In effect, the interface asks the todo-agent to choose the most urgent item on the
todo-list. Upon receiving this message, the todo-agent will compare the attributes of the items
on the list and hopefully come up with the one that should be taken care of first. The ideal
todo-item (the one that is to be moved to the diary first) is extremely fun and takes little to no
effort. Furthermore, it should be important, the deadline should be close and the activity
should take little time. The item that satisfies the most of these preferences will be chosen.
Note that we only use preferences here. However, normalities could also be checked for
satisfaction while choosing an item. Once this is done, the todo-agent will propose the chosen
item to the interface and thus to the user.

propose
suggestions for
todo-items

propose
urgent todo-item

Figure 4.6: The message flows concerned with the planning of todo-items. The asterisks and
hash-symbols indicate button-presses by the user.

After pressing another button on the interface, indicated by the asterisk-symbols in Figure 4.6,
the user will be aided in moving an item from the todo-list to an appropriate date and time on
the diary. This can be either the item chosen by the todo-agent or another one, chosen by the
user himself. First, a message is sent from the interface to the diary-agent. Upon receiving it,
the diary-agent will generate suggestions for the todo-item. He starts searching for unoccupied
periods at the current date and time until some condition is met. That is, when the diary-agent
reaches the deadline of the todo-item, it should stop collecting suggestions. Also, the diary-

70

U'

propose
best

choose suggestion
for todo-item

LIP
todo-item

agent should stop searching when a given number of suggestions has been collected (e.g.
fifty). While looking for these unoccupied gaps, the diary-agent takes into account the travel
times between the locations of the items already on the diaiy and that of the one to be placed.
In order to do this, the system needs the distance-matrix to be up-to-date. If a required travel
time is unknown, the user is prompted to provide it. See Section 4.5.2 for some more
information on updating and using the distance-matrix.

The list of suggestions that results from this search is sent back to the interface as a
proposal. The interface forwards this message to the user-agent as a cfp. His task is to select
the best suggestion. Again, by the best one, we mean the one that satisfies the most
preferences. Just like with choosing the most urgent todo-item, choosing the best suggestion
can make use of normalities as well as preferences. However, we claim that in the current
domain, preferences can yield rational decisions, even without the consideration of
normalities. These are the preferences used to guide the choice: the user's energy threshold
should be obeyed, travel times should be minimized, monotonous days should be avoided and
user-specific preferences should be taken into account. The chosen date and time are proposed
to the interface so that it can be highlighted for the user. To summarize, the planning skills of
our adaptive diary assistant consist of three separate parts: Choosing the most urgent todo-
item, generating a list of possible dates and times for a todo-item and choosing the best
suggestion from that list.

4.5.2 Communication during distance-matrix maintenance

Another part of the system that makes extensive use of agent communication is the one
concerned with the maintenance of the distance-matrix'. This part of the user-model is the
graph equivalent of the kind of tables commonly used for distance or travel time lookup. The
distance-matrix is used twice during planning. First, the diary-agent needs it when looking for
gaps in the diary. The todo-item's duration as well as the travel times to and from the adjacent
diary-items determine whether a gap is large enough. Second, the matrix is used by the user-
agent when he chooses the best date and time from a list of suggestions. In particular, the
choice is guided by the minimization of travel times. Consider for example, the situation
where a meeting in Amsterdam has to be placed on the diary. Suppose one of the suggestions
is to put it between two appointments in Groningen. The user-agent has a preference for
minimizing travel times, so he will probably choose a suggestion for another day.

Of course, the distance-matrix needs to be up-to-date. For the input of new travel
times, the system has to rely on the user. This is why we only want to update the matrix when
a travel time is actually needed for generating suggestions or choosing a suggestion. Being
prompted for travel time input is a little tedious at first. But after a while, as the distance-
matrix becomes more complete, the user is rarely asked to provide a travel time anymore.
Figure 4.7 does not show all communication concerned with maintaining and using the
distance-matrix. It only contains the update mechanism initiated by the diary-agent while
generating date and time suggestions. The user-agent can initiate a similar update mechanism,
but this is not shown in Figure 4.7; neither is the actual use of the distance-matrix.

'The terms distance' and 'travel time' have the same meaning: The number of minutes required to get from one

location to another.

71

Figure 4.7: The message flows concerned with maintaining the distance-matrix.

When the diary-agent checks whether a gap between two diary-items is large enough for a
certain todo-item, it needs to know the travel times between the locations associated with
these items. Since the user-agent is the only one that has access to the distance-matrix, the
diary-agent has to send him a request. The user-agent then searches the distance-matrix for
the required travel time. If he finds it, he informs the diary-agent. If the required travel time is
not present in the matrix, the user-agent will pass on the request to the interface.
Consequently, the user is asked to provide the travel time. His or her answer is sent back to
the user-agent in an inform message. This agent then stores the travel time in the matrix and
passes the inform message on to the diary-agent. Either way, the diary-agent will receive the
required information and can continue his work.

As can be seen from the information flows above, we do not use confirmation messages.
Furthermore, items are moved instead of copied when sent to another agent. We do not need
confirmation messages or copying of data, because the medium is safe; the system is not truly
distributed. Whenever an item or part of the user-model is moved from one agent to the other,
the responsibility to handle it moves along with it.

We refrain from describing all message flows in the system. First of all, there are
simply too many tasks and sub-tasks to describe them all without losing the reader's attention.
Second, most of the communication between the different agents is similar to the
communication described above.

4.6 Methods for learning in a diary assistant

The ability to adapt to the user's needs is what makes our diary assistant special. The current
Section provides an overview of the different learning techniques that are used. We refer back
to Section 3.3 for a discussion of the modes of learning at our disposal. During reasoning, our
agents employ three types of rules: undefeasibles, preferences and normalities. Learning
amounts to creating, deleting and augmenting these rules as well as atomic facts. The rules

72

I,

request
distance
between
x&y

request
distance
between
x&y

inform
distance
between
x&y=z

between
x&y=z

and facts deployed by the diary-agent and the todo-agent are static. The only agent that learns
is the one modelling the user. As can be seen from Section 3.3, the ways the user-agent can
learn things are diverse and plentiful. Below, we fill in these ways with concrete matters.

• distance—matrix: This learning task is concerned with maintaining a matrix of travel
times between the locations of the user's activities. If the diary-agent knows for example
that home and office are approximately fifteen minutes apart, he can take this into account
when planning activities with the same values for their location attributes. The user has to
communicate these travel times to the system explicitly when asked.

• type-tree: The user-agent can learn the meaning of the types and sub-types of items. He
could for example derive which types of activities are relatively demanding for this user
and then avoid planning more than one of these items on the same day. Also, the system
should be able to add new types and sub-types along with information about their
meaning.

• user-energy: The user's average amount of energy for a given day can be learned by the
user-agent. This is done by statistical analysis. We distinguish between different types of
energy. Mental energy is something else than physical energy. In fact, physical effort in

sports can replenish one's mental energy.
• default-week: The maintenance of a model of the typical week for this user. The planning

of new items by the diary-agent can use this information. For example, items of the type
work should not be planned after five o'clock or during the weekend. The system should
also be aware of facts such as "The user plays soccer every Wednesday night." and "He or
she spends less energy on Sundays." The system can augment the model of the user's
typical week using both implicit methods and explicit methods: Analysis of history or
repetitive punishment could indicate that the typical week has changed. Alternatively, a
dialogue initiated by the user or the diary assistant can be used for this learning task.

• alternative dates and times: The way the diary-agent collects alternative dates and times
for items could also be subject to learning. How many should he collect and how big
should the time-interval between two suggestions be. This depends on the item's duration,
but also on user-specific preferences. A dialogue with the user can be initiated to obtain
the necessary information.

• level of occupancy: By analysing the user's behaviour and the history of the diary and
todo-list, we can maintain the level of occupancy of a day or week. This is used in
planning, but also in adaptation. The todo-agent could for example derive from history
that many todo-items are added on Wednesdays. He could ask the user to confirm this fact
and then the user-agent could anticipate on it during planning.

• search window: The augmentation of the search window for collecting alternative dates
and times for items. Some people like to spread their todo-items over a long period of
time, while others like to get things done as soon as possible.

There are many more opportunities for learning in the domain of appointments and
obligations, especially if the system is able to construct new preferences and normalities.
Unfortunately, we did not have time to actually implement a general purpose method for
constructing new preferences and normalities (using the modality time as well).
Consequently, the application we ended up with does not have all the adaptation skills we
intended it to have.

73

4.7 Interface design

As was already mentioned in Section 3.4, we did not perform an extensive study of the
literature on interface design. Instead we drew upon our own factual knowledge as well as
Rockingstone's experience with developing database applications. The resulting design obeys
the Rockingstone interface-style and it is built from standard Delphi components. A
screenshot is included in Figure 4.8. We trust that the design is intuitive enoug1 to speak for
itself.

1000

- - -

2006-07-18800> Ixeoe math ct,ae

>—

_

200607-1811:00> newod
2006-07.1617:00> lenin xaIy bos—.Wer

Do Iemonecak — To preo&echctlIe
Fmai 8O00 —f- T - -

Dtx �XL00
r DeafreJ —

Type kn .:jjL1j

Sce ccerdence Jj

LCcaUOnIIDEA jj

•1

DIARY medeg 10 ji.ã 2Ol j j
W• 11:W) ...8tmnec*
11 00-100,statfmeeta,g
1400- 1800 vile eoied ptopoeat

P Inodcejj I
P P,àcateffoit 4:J -
P Ment&oit4
P Fm4J

Dlza I 1:3000 -i-•

P Deacb,o 14-7.2006 iJ lla0000 ±
Type Iwouk

Sepe'ecbj. j__.d
LoceorJDEA

P Irroitece iJ I .'
P PPUceIfoit i —

P Meriateito,t.jJ] -
P

Figure 4.8: The interface of the adaptive diary assistant with the diary on the left and the
todo-list on the right.

This concludes the current Chapter, but there are two more Chapters to go. Chapter 5
elucidates the implementation of the diary assistant and Chapter 6 consists of our conclusions
and an extensive discussion on evaluation and future work.

74

5 Implementation
We use OutOfBrain for the implementation of the adaptive diary assistant. That is, the view
and control components are implemented in Delphi, whereas all the model components are
implemented in OutOfBrain'. Since we are dealing with a new programming environment that
is still under development, the implementation phase is scientifically more interesting than is
normally the case. We use an incremental strategy; the design changes during implementation
where appropriate. Furthermore, the functionality of OutOfBrain itself is improved as needed.
See Appendix A for the current version of the OutOfBrain manual.

Unfortunately, many of the ideas in our original design did not get implemented.
Section 5.1 mentions the components that did not make it past the design stage. Some of the
reasons and possible remedies for these shortcomings are discussed in Sections 6.1.3 and
6.3.1 respectively. The main reason for them however is simply the time pressure. Once we
arrive at Section 5.2, we have a clear picture of what is actually implemented. Section 5.2
explains the implementation on an abstract level of description. It contains an overview of one
of the three agents where each rewrite rule is represented as a single node. Overviews of the
other two agents can be found in Appendix B. In Section 5.3, a small part of the
implementation is explained in detail. The reader is encouraged to consult Appendix C for
some host graph representations. Section 5.4 focuses on the use of preferences to guide
decision making2. Finally, to show that the diary assistant actually makes intelligent decisions,
we include a small test report in Section 5.5.

5.1 Design reconsideration

The design presented in Chapter 4 is not implemented in its entirety. Instead of changing the
design Chapter to fit the implementation, we choose to leave it unaltered, because we would
like to leave the complete design for future implementation. We just did not succeed in
implementing it all. The parts of the design that did not get implemented are presented here
and they are discussed a bit further in Sections 6.1.3 and 6.3.1.

There are two shortcomings of the actual implementation that are quite regrettable
from a scientific point of view. The first is that we did not use normalities in our adaptive
diary assistant. We did make the functionality for normalities available in OutOfBrain, but we
did not use them in the adaptive diary assistant. The second regrettable shortcoming is that we
did not incorporate time, the third modality of the QDT+ architecture, into OutOfBrain.

The model, view, control(ler) architectural pattern dictates a strong distinction between the three main
components of an application. Modifications to one component can be made with minimal impact on the others.
The model component contains everything that happens on the inside, whereas view and control are the parts
that take care of interaction with the user.
2 One of the most important deficits of the implementation is that we do not use normalities. Of the two CO.
models that make a QDT-model, we use only the one for preferences.

75

Consequently, we could not use it in the adaptive diary assistant either. Implementing the
QDT+ design presented in Chapter 4, including normalities and time, is something for
potential future work.

Partly because the modality time did not take solid form, we did not have the means to
implement a general purpose learning method either. The plan was to create a mechanism that
analyses history in order to add, remove and change preferences, normalities and
undefeasibles. Instead, we ended up with a system that is much more static than the one we
set out to create. The system does learn, but only in a predefined, highly constrained problem
space that fails to impress.

Besides these major design reconsiderations, a couple of other ones have taken place,
especially with respect to which agent does what. We found that (simulated) distributedness
forces one to think carefully about who does what, because communicating information to
and fro is both costly and complicated. Section 5.2 exactly describes the task distribution as it
was implemented. Furthermore, from the methods for learning presented in Section 4.6, onlr
the top three were actually implemented: distance-matrix, type-tree and user-energy
Furthermore, most communication now runs via the user-interface instead of directly between
the agents.

Another one of our design reconsiderations is that during the planning of todo-items,
the user cannot ask for a new set of dates and times. When the user is not satisfied by the
chosen suggestions, the re-planning has to be done manually. Yet another component that was
withdrawn is the supporting role of the user-agent and his user-model during the todo-agent's
item selection. The todo-agent has to make do without the user-agent's help. Furthermore,
only the human user can decide that it is time to move a todo-item to the diary. Our initial
plan was that the diary-agent and todo-agent can also decide so when the diary is relatively
empty or when the todo-list is relatively long.

The items on the diary and todo-list also had some components removed. In particular,
the attributes atomic and people were not implemented (Section 4.4.3). The same holds for the
message class's members language and ontology. We feel that the removal of these four
attributes was a good move. The user already has to provide a lot of information per item for
the intelligence to work, even without the attributes atomic and people. Furthermore, the
language and ontology we used for the messages is unequivocal. The agents always speak the
same highly constrained language, so the attributes are obsolete.

Also with respect to the interface, things have changed considerably. As can be seen
from Section 4.7, we do not use a conversational text-interface2. We had to choose a different
input method due in part to time constraints on the project. Instead of text, the diary assistant
is controlled by an array of buttons, check-boxes and text-fields. We know from research in
language processing that a conversational text-interface is only useful if it is worked out
properly, even if it uses a formal syntax. Obviously, we did not have the time for that.
However, Rockingstone does intend to incorporate conversational text-interfaces into future
applications.

The following Section contains an overview of the diary-agent, represented in the OutOfl3rain
equivalent of pseudo-code. Similar overviews of the todo-agent and the user-agent can be
found in Appendix B. The style of the Figures in Section 5.2 and Appendix B should be
familiar. OutOfBrain is also a convenient tool for creating diagrams, so we decided to use it
for the implementation overviews.

'User-energy is called average-energy in the implementation. Consequently we use both these words to refer to
the same part of the user-model. Recall that we also use distance and travel-time interchangeably.
2 Chapter 4 describes the old design, whereas Chapter 5 relies on the new design. Section 4.7 is an exception,
since it describes the interface that was actually implemented.

76

5.2 Process overview

Without further ado, we now present a substantial part of the implementation. It would be
nonsense to provide all the code itself, so we have translated the three agents to the
OutOfBrain equivalent of pseudo-code. There are three processes in total, one for each agent.
In this Section, we only provide the diary-agent. The other two can be found in Appendix B
(without any further explanations). For sake of simplicity, some parts of these overviews have
been simplified or changed a bit. In particular, we do not always stay true to the edge labels
connecting the rules (before/after, implied, true/false, see Appendix A, Chapter 5). These are
minor details however; functionality is identical in implementation and overview. Please
consult Appendix C for some coverage of the host graph.

Figure 5.1: The diary-agent 's skeleton. When a message is caught that satisfies certain
constraints, one of the rules labelled '#catch#' returns true. Activity then moves from this
skeleton to one of the main branches depicted in Figures 5.2, 5. 4a, b, 5.5 and 5.6.

The user-agent
Like the other two agents, the user-agent begins each iteration with checking whether there is
a message on the blackboard with receiver 'diary-agent'. If this is the case, old references are
cleaned up and a new one is created. See Section 5.4 for a detailed description of some rewrite
rules, including clean up and initialization. Once this is done, the message's attributes are
matched against four different moulds. Each one serves as a door to the main branches of the
process. The first one catches messages of the form "request maintain calendar". Such
messages are sent by the interface whenever the calendar has to shift forward in time. We
want to have one entire year ahead of us in the diary at any given time. If the mould fits the
message, activity moves down to the square labelled '1'. This same square can be found in
Figure 5.2. That is where the process continues. In reality, the user-agent consists of a single
process, but we could just as well distribute the parts depicted in Figures 5.2, 5.4a, b, 5.5 and
5.6 over different processes, different graphs or even different computers. The numbered
squares could then act as interface places (see Section 3.1.4 and 3.1.5).

If the message found on the blackboard is not of that form, we move on to the next
mould. This one checks whether the message is a call for proposal on suggestions for a todo-
item. Such messages are sent by the interface whenever the appropriate button is pressed by

77

the user. If the condition returns 'true', activity moves to Figure 5.4 via interface place 2. The
diary-agent should then create a list of suggestions for the todo-item that is highlighted on the
interface. When this is done, the user-agent has to choose the best suggestion according to an
array of preferences. The communication involved in this triangular cooperation is explained
in 4.5.1. For the user-agent's role in this task, we refer to Appendix B.

Figures 5.5 and 5.6 can be entered through places 3 and 4 respectively. These branches
update both the type-tree and the user-energy (see Section 4.6 and Appendix C). The distance-
matrix does not need such an update mechanism, since it is maintained automatically
whenever a new travel time becomes available. If none of the moulds fit the message, the
diary-agent throws a "not understood" message back to the sender. Below, we elucidate these
four branches of the user-agent.

Calendar maintenance
We enter the first branch of the diary-agent (Figure 5.2). This means that the message selected
at the first step of this iteration is of the form "request maintain calendar" (Figure 5.1). This
branch makes sure that the calendar always reaches one year into the future. The easiest way
to grasp the Figure above is by comparing it to the corresponding pseudo-code in Figure 5.3'.

while calendar less than 365 days into future do
if calendar not ends with Sunday

add day on this line;
else

add day on new line;
increment variables;

end do
throw done maintain calendar;

Figure 5.3: Pseudo-code equivalent to Figure 5.2.

Suggestion generation
If the selected message is of the form "cf, suggestions for todo" instead, activity moves to
Figure 5.4 via interface place 2. This branch is much more complicated than the previous one.
It is responsible for planning todo-items. Because the branch is so complex, several clean up
and initialization steps need to be done at the start of each iteration. The main loop of the
branch starts by checking whether there are already ten suggestions for the todo-item. If so,
the user-agent is done and can proceed to sending the reply message with the gathered
suggestions attached to it. If not, the user-agent enters the loop by checking whether some

'In fact, the method of representation used in Figure 5.2 is an OutOfBrain equivalent of pseudo-code.

78

-l

Figure 5.2: This branch makes sure that the calendar always reaches a year into the future.

search-variable' has reached five o'clock already. If this is the case, the search-variable moves
to eight in the morning of the following day and activity shifts along the edge labelled
implied" (see Appendix A, 5.6). After another clean up and initialization, the sidetrack joins

the main loop again at the rule that checks whether the search-variable has passed the
deadline. Obviously, an agent that suggests dates and times past a todo-item's deadline is a
bad planner. If the search-variable has passed the deadline, and the user-agent collected five
suggestions already, he is done and breaks from the loop. If not, he needs to come up with at
least one more suggestion.

Producing a suggestion starts with a set of overlap checks. Items on the diary can have
overlap with a suggestion in one of three ways, rendering the suggestion useless. The item on
the diary could envelop the entire suggestion, from start to end ('overlapO?'). In this case, the
search-variable and the search-variable plus the todo-item's duration are both after the do-
item's start and before the do-item's end. It could also be the case that there is partial overlap
at either the front end side or the back end side ('overlapi?' and 'overlap2?' respectively). If
any of these checks returns 'true', the user-agent makes the search-variable jump over the
conflicting do-item and then loops back to the beginning of the branch.

Figure 5.4a: First half of the diary-agent 's second branch that generates a list of suggestions
for a given todo-item.

Only if no overlap occurs, can the current suggestion be a good one. But before the user-agent
accepts a suggestion, he has to take into account potential overlap caused by the travel times
between the todo-item and the adjacent do-items. Furthermore, he has to store these do-items
in the reply-message, so that the user-agent can make an informed decision as to what is the
best suggestion. In particular, the user-agent tries to choose a suggestion that leads to

'This search-variable is a date/time object that keeps track of where, or rather when, the diary-agent is currently
searching. It is initialized to hold the current date and time (taken from the system clock). During suggestion
generation, it jumps half the todo-item's duration after finding a good suggestion and it jumps over a do-item
when overlap occurs.

79

— & ethe (J1O po1fJ , ., the

alternation of subtypes and attributes. The first thing the user-agent has to do is find these
adjacent do-items. He does this by first selecting one from the appropriate day at random.
Then, the one just before and just after the suggested time are found through pairwise
comparison. Once we have found these so-called "latest prior do" and "earliest next do", we
can proceed to Figure 5.4b.

Suggestions obeying travel times
The diary-agent only has to take travel times into account if the todo-item actually has a
location. If not, the suggestion should be accepted and stored in the reply-message (after
another clean up and initialization). The prior do-item and next do-item are also stored in the
message, so that the user-agent can analyse them while choosing a suggestion. Furthermore,
the travel times (distances) for the suggestion are sent along if it has any, because the user-
agent tries to minimize these. To make the user-agent's job even easier, the diary-agent
performs some preliminary calculations for him. He calculates the absolute differences
between the attributes of the prior do and the todo-item (importance, mental effort, physical
effort and fun). He does the same for the todo-item and the next do. Then the suggestion is
done and it is glued to the todo-item between the suggestions already hanging there. The todo-
item is in turn part of the message that will be sent upon the completion of suggestion
generation. Finally, the user-agent increments the search-variable and starts again at the
beginning of the loop. The step size is half the todo-item's duration.

If the todo-item does have a location, the user-agent could still be a long way from
home. After another clean up and initialization, he would have to check whether the prior do
and the next do also has a location specified. If these are absent, nothing can be done with
respect to travel times, so the user-agent proceeds to storing the suggestion along with all its
additional information (top-right part of Figure 5.4b). If the prior do or the next do does have
a location, we need to check whether it is the same as the todo-item's location. If they are
identical, there are no travel times and the suggestion can be stored.

However, if one of the locations is different, the diary-agent needs to know the travel
time between them. He does not have access to the user-model, so he has to consult the user-
agent for this. The required communication is represented by the two triangular formations of
black nodes. First, the diary-agent throws a request for the distance between locations x andy.
Then, he waits for the user-agent's reply. The user-agent might have to pass the request on to
the human user via the interface, or the travel time might already be in his distance-matrix.
Either way, the diary-agent simply catches the reply and stores the travel time. Consequently,
the distance-matrix does not need to be updated periodically, because it is always up-to-date.

Now, we have reached the bottom half of Figure 5.4b. If there is a travel time
(distance) between the prior do-item and the todo-item, the agent has to increment the search-
variable appropriately ("jump over distance"). For the travel time between the todo-item and
the next do-item, this does not apply. However, in both cases, the message has to be deleted
and the user-agent has to check if the travel time is greater than zero. If not, overlap due to
travel times cannot occur, so the agent simply moves on to storing the suggestion. In most
cases however, the travel time will be greater than zero, potentially causing overlap. If it
occurs, the suggestion is no good and the user-agent throws it away. He then moves back to
"jump half a duration" and from there back to the start of the loop to create a new suggestion.
If overlap does not occur, the user-agent stores the suggestion in the usual way and then he
enters the loop again.

80

.
Figure 5. 4b. Second half of the diary-agent 's suggestions generator.

Updating type-tree
The diary-agent enters the third branch from Figure 5.1 if the selected message is a request to
update the type-tree. It starts with a clean up, an initialization and the deletion of the old type-
tree. Then, the process stays in a while-loop until all do-items have been analysed for the new
type-tree. The types, subtypes and attributes of todo-items are not analysed, because this
would only complicate the system with extra communication. Besides, every todo-item will
eventually become a do-item that will be analysed for the type-tree.

An iteration through the loop starts with marking a do-item and then two clean up
steps. Then, the diary-agent adds the marked item's type and subtype to the type-tree if they
are not already there. Next, the attribute sums and counts associated with the item's subtype
are incremented for all four attributes. When the diary-agent breaks from the while-loop, the
sums contain the summed attribute values of all items of the same type and subtype. The
counts are used later for dividing the sums into average attribute values. The item that was
just analysed is marked as done and a new item is selected. This process continues until all
do-items are marked as done. It is the diary-agent who does the updating, but the user-agent is

81

A

—

I

the only one with access to the resulting type-tree. A typical type-tree is depicted in Figure
C.5 ofAppendix C.

The diary-agent then arrives at the bottom half of Figure 5.5. After some more
housekeeping, he enters another while-loop. This one has the same anatomy as the one just
described. It calculates the average importance, mental effort, physical effort and fun for all
type/subtype pairs in the type-tree. When the user adds an item of the same type and subtype,
its attributes will be set to these average values. The user can still augment the values, but the
averages calculated by the diary-agent should be close to the desired values.

Updating user-energy
The fourth and final branch of the diary-agent processes messages of the form "request update
user-energy" (Figure 5.6). The user-agent needs this user-energy to be up-to-date because it
is an estimate of how much mental and physical effort the user can handle on an average day.
The diary-agent simply analyses the do-items on each day and calculates the average amount
of effort per day (todo-items are not analysed). This measure becomes more and more reliable
as the system is being used.

While the user-energy is not up-to-date, the diary-agent has to keep iterating through a
loop. The user-energy is only up-to-date if every day up to yesterday has been analysed. So if
this update process is called once a day, it only needs to go through the loop once. It starts by
moving one day ahead from the day that was previously analysed. Then, after some
housekeeping, the diary-agent checks whether there is an item on that day. If so, the number-
of-days variable is incremented so that dividing the total amount of energy by the number of
analysed days yields the correct average.

'We use the terms average-energy and user-energy to refer to one and the same thing.

82

Figure 5.5: The part of the diary-agent responsible for updating the type-tree.

Figure 5.6. The branch that has to be followed when the selected message is a request to
update the user-energy.

After some more housekeeping, the diary-agent checks whether the day has more items. If
not, the day will not be used to update the user-energy, because chances are slim that the user
spent the majority of his or her energy that day. If the day does have more items, they are
analysed one by one in a nested while-loop. These sums then reflect the amount of
importance, mental effort, physical effort and fun for the entire day. Only the mental and
physical effort are used by the user-agent, but since it is so easy to keep track of importance
and fun while you are at it, the diary-agent might just as well calculate them in the process.

When the day is done, the diary-agent starts at the beginning of the outer while-loop
again. If there is another day to analyse, number-of-days becomes two and the analysis
repeats itself. When there are no more days to analyse, the agent breaks from the loop and
divides the attribute sums by the number of days. The user-agent can then use the resulting
averages as mental and physical energy thresholds when planning todo-items. If adding a
todo-item to a day results in violating either the mental or the physical energy threshold, the
item had better be placed on another day. Unfortunately, the preferences that lead to this
behaviour were not implemented, because they would require some extra data manipulation.
We did not find the time to build these preferences and everything required for them.

This concludes our explanation of the diary-agent's four tasks. The todo-agent and the user-
agent can be found in Appendix B. There is no text accompanying it, because we trust that the
explanation of the diary-agent above makes the use of OutOfBrain-pseudo-code sufficiently
clear. Consequently, the Figures in Appendix B should be readable without further
elucidation. We now move on to some detailed descriptions of a couple of rewrite rules.

5.3 Some rewrite rules explained

An OutOfBrain program is essentially a host graph and a set of parallel processes, three in this
case: diary-agent, todo-agent and user-agent.. These three processes are explained on a global
level of description in Section 5.2 (diary-agent) and Appendix B (todo-agent and user-agent).
Now, we take a closer look at part of the user-agent in order to get a thorough understanding
of the inner mechanisms at work. We choose the part where every iteration through the

83

process (that is the user-agent) starts, because it gives a clear picture of how activity can flow
through an OutOfBrain process.

The OutOfBrain search engine looks for nodes that are labelled <process>. Each such node
indicates that we are dealing with a separate process that runs in parallel with all other
processes. The adaptive diary assistant consists of only three of these, but theoretically there
is no limit to the number of processes. Each of these nodes should have an outgoing edge
labelled <begin> indicating where an iteration should start. For each begin-edge, there is also
an edge labelled <run>, determining the current state of the process. In Figure 5.7, the
process-node can be found in the upper-left corner. Its begin-edge and run-edge point to a
condition consisting of a group of nodes with edges between them, which can easily be
translated to first-order logic.

B x By (Message(x) A Sender(x, y) A Receiver(x, user-agent))

This condition returns 'true' when there is a message on the blackboard that has some sender
and a specific receiver, namely the user-agent. The sender can be either the diary-agent, the
todo-agent or the interface. In effect, the condition checks whether there is a message on the
blackboard for the user-agent. The other two agents start with an identical check. The run
edge can only point to the next step in the process when the condition returns 'true'.

Once the condition is met, the run-edge will point to an implication that cleans up
potential edges in the host graph that have been created in the previous iteration. In particular,
it removes all occurrences of the graphical equivalent of Message(ur-useragent, x) where ur-
useragent is a unique reference object and x is a message that was processed in the previous
iteration1. There are two edge emanating from this implication. One of them is labelled
<implied> and points to the same location again. This edge makes sure that whenever the
implication fires and thus removes an occurrence of Message (ur-useragent, x), the check is
repeated. Only when no more occurrences are left in the host graph, the activity can move
along the other emanating edge, labelled <next>.

Then, we arrive at the next implication, which creates an edge of the kind that was
just removed. It looks for the unique node labelled [ur-useragent] and for a node labelled
[message]. The <reference>-edge that runs from this message-node to the condition at the
start makes sure that the implication chooses the message that was previously selected from
the blackboard. Thanks to the creation of this pointer, the user-agent knows which message it
is processing. He does not have to search for it again, which decreases the time complexity of
the system.

Once the clean up and initialization are done, we arrive at a fork in the process. This is
where the user-agent will look at the selected message more closely to determine what to do.
The run-edge now points to a condition that checks whether the selected message has a
particular performative and content. The message should be a call for proposal on choosing a
suggestion for a todo-item. In other words; someone (the interface) is asking the user-agent to
use his preferences to select the best suggestion for a todo-item from a given non-empty list.
A first-order logic translation is provided below.

Message (ur-useragent, message) A Performative (message, cfi) A
Content (message, todo) A By Suggestion (todo, y)

'Note that the predicate Message(x, y) is nothing more than a tool to remember which message the user-agent is
currently processing, whereas Message(x) from the previous example means that object x is a message.

84

If the user-agent finds that the message is indeed of this form, the activity will move to the
right to process the message. If the condition is not met however, the message is apparently of
a different form. In this case, the activity moves downward and arrives at the next message
handler.

This one checks whether the message is a request for the distance between two
locations (travel time in minutes). The diary-agent regularly needs to obtain these travel times
from the user-agent's knowledge base, because he needs to take them into account while
generating possible dates and times for todo-items. The condition corresponds to the
following sentence.

Message (ur-useragent, message) I\ Performative (message, request) A
B x By Content (message, distance(x, y))'

If the condition is not met, we are dealing with yet another type of message. In this case, the
activity moves further downward to the next message handler. However, if our message is of
the type described above, we move to the right until we arrive at an implication that is a bit
more complicated than the rules we have encountered so far.

It copies the two locations from the message to the distance-matrix. The OutOfBrain
engine ensures that this only happens if the locations are not yet present in the distance-
matrix2. The reflexive implied-edge makes sure that both locations are copied if necessary
before the run-edge moves on. The textual equivalent we provide is a little different than one
would expect, because of the use of function symbols7. Thanks to the rule distance(x, y) =
distance(y, x) and the reflexive implied-edge, location-edges are created from the distance-
matrix node to both locations.

V x By ((Message (ur-useragent, message) A Content (message, distance(x,y)))
Location (distance-matrix, x))

'The correct translation of Content (message, distance(x,y)), without using functions is

B x By (Contenl('message, distance) A Between(distance, x) A Between(distance. y)), which is not a natural
sentence at all. The use of the function distance makes for a convenient representation. However, the current
version of OutOtBrain does not yet allow the use of functions. It would require hyper-graphs, in which edges
between edges are allowed as well as edges between nodes [Blostein et al. 1995]. Furthermore, we would have to
restrict the number of edges allowed, so that the use of a function would always map to exactly one object.
Partial functions could also be implemented.
2 When this implication fires, we know that we are dealing with a new location. Instead of looking up the travel
time himself, the user-agent has to pass on the request to the interface. The human user is then prompted to
provide the travel time.

85

,. -
,/

Figure 5.7. Part of the user-agent. The node labelled <process> and its <begin> edge
indicate where an iteration starts. The <run> edge points to the implication or condition that
is currently active.

86

v—

__

_

5.4 Using preferences

In addition to implications and conditions, one can use so-called OutOfBrain-agents inside a
process. These can use both preferences and normalities to guide decision-making. However,
we found that the problem at hand can be solved with only preferences just fine. Both the
todo-agent and the user-agent possess an OutOfBrain-agent that uses a collection of
preferences. Below, we briefly explain them both since they are the backbone of the system's
intelligence. Please consult Appendix A, Chapter 6 for a detailed manual to the use of
OutOfBrain-agents.

?J' Jot;lL ,otanceI

Figure 5.8: The OutOJBrain-agent that selects the most urgent todo-item on the list by
satisfying as many of the six preferences as possible.

The todo-agent's OutOfBrain-agent is responsible for choosing the most urgent todo-item on
the todo-list. It utilizes six preferences and it has only one voluntary action (see Figure 5.8).
Choosing a todo.-item as the most urgent one is nothing more than creating an edge labelled
"most urgent todo" from a unique reference-node to the appropriate todo-item. What the agent
should do if he does not succeed in choosing a todo-item is also specified: send the interface a
failure message.

To understand why these six preferences lead to the selection of the most urgent todo-
item, one should consider what attributes an extremely urgent todo-item would have. It would
probably have high values for its importance and fun. This corresponds to the preference to do
important things and fun things first. Mental effort and physical effort on the other hand
should be low, because most people tend to postpone tasks that are mentally or physically
demanding. Finally, if its deadline is close, an item increases in urgency. A past deadline also
has a positive effect on an item's urgency. Whether this last one is a natural preference is
debatable. We chose to omit a preference for items with a short duration, because the
interpretation we use for mental and physical effort already contain this preference.

Inside the user-agent there is a similar OutOfl3rain-agent that is responsible for choosing the
best suggestion from a list generated by the diary-agent (Figure 5.9). Choosing a suggestion is
again nothing more than creating some edge. And just like the todo-agent, if the user-agent
fails for some reason, he needs to send a failure message to the interface. The eight

87

0' C4)

Q. lOup?, (oup)

preferences on the right-hand side of Figure 5.9 are all of the same form. They express the
user-agent's preference for attribute alternation and thus for diverse days. He maximizes the
absolute differences between the four attributes of the prior do-item and the four attributes of
the todo-item that is to be placed. He does the same for the todo-item and the next do-item.

The preferences on the left-hand side of Figure 5.9 express three different desires.
First, the user-agent wants to plan the todo-item as early as possible. Second, he tries to
interchange type/subtype pairs to ensure diverse days. Finally, he minimizes the travel times
that come with the suggestion. Due to their need for some supporting functionality, we did not
have time to implement preferences for staying under the user's energy thresholds. This is
quite regrettable, since we did implement a sequence that periodically updates the required
part of the user-model (see Figures B.6 and C.6 in the Appendices).

Figure 5.9: The user-agent's OutOfBrain-agent that chooses the best suggestionfrom the list
generated by the diary-agent.

From Figures 5.8 and 5.9, we selected two preferences to explain in detail (Figure 5.10). They
show that QDT-preferences can be translated to OutOfBrain quite easily. The left one
expresses the todo-agent's preference for selecting important todo-items as urgent. The right
one represents the user-agent's preference for alternating fun activities with boring ones.
There are actually two preference needed for that: one for alternation with the prior do-item
and one for alternation with the next do-item.

Both preferences are of the type 'count', which means that the agent tries to choose an
option' that satisfies the preference as often as possible. In other words, in case of the left
preference, the most urgent todo-item should ideally have a higher importance value than all
other todo-items. In case of the preference on the right-hand side, the agent wants a preferred
suggestion that comes with a prior-delta-fun higher than that of most other suggestions. This
concludes our elucidation of the preferences used in the adaptive diary assistant.

'A todo-item or a suggestion, depending on which agent we are talking about.

88

%,._ akççeshon

O• '.4)

0•

°.cw'

wh ns,dI0•

,,

deI& vh !

Figure 5.10: The todo-agent 's preference for choosing important todo-items as most urgent
(left) and the user-agent 's preference for alternating fun activities with boring ones (right).

5.5 Test report

To test the diary assistant properly, a large empirical study would be required. One where a
group of subjects would have to use the system for several months and then give structured
feedback on their findings. Such a test is of course beyond the scope of the project, but we
need to conduct some form of testing to prove that the diary assistant is useful. The current
Section provides the report of a small test in which the diary assistant performs some typical
planning operations. The entire test was performed on Sunday the ninth of July.

The test consists of fourteen do-items (filling one week of the diary, starting at the
tenth of July) as well as seven todo-items. This set of items and the planning operations
performed on them, serve as a snapshot of the diary assistant in use. Unfortunately, the long-
term effects of user-modelling cannot be tested this way. The do-items and todo-items can be
found in Table 5.1 and 5.2 respectively. For a screenshot of the actual application during this
test, we refer back to Figure 4.8. Times and dates (in the columns from, till and deadline) have
been abbreviated. Monday the tenth of July, 11 a.m. for example, becomes "10, 11.00". The
attribute values in the four rightmost columns can range from one to ten.

Choosing a todo-item
After putting these twenty-one items on the diary and the todo-list, the user-model needs to be
updated. Also, whenever a new item is added, it inherits the average attribute values of all
items with the same type and subtype. This is possible thanks to the type-tree (see Figures B.7
and C.5 of the Appendices). The user can still change the values manually of course.

The first step in the test is having the todo-agent select the most urgent todo-item (see
Section 5.4). He chooses item number one from Table 5.2. This is an intelligent decision,
because the item's deadline is close. Furthermore, it is very important and a lot of fun too.

/c'—

.o (W4

1002
(1% 0•

89

Also, it does not take much physical effort. The item's only drawback is that it takes a lot of
mental effort. Still, given the characteristics of the other six items, it is probably the best
choice.

staff meeting

action from till

I email/phonecalls 10.9.00 10,11.00

2 10,11.00 10.13.00

3 wTlte project
pro—

10,14.00 10,1800

4 give math lecture 11,9.00 II, 11.00

5 etnail/phonecalls 11,11.00 11,11.30

6 attend colleague's
presentation

11,14.00 11,15.00

7 project meeting II, 15.30 II, 16.45

8 writeproject
- pro_

12,9.00 12,17.00

9 socceruaining 12,20.00 12,22.00

I homework
0 correction

13,9.00 13,11.00

I einail/phonecalls 13,11.00 13, ll.30

I clean kitchen
2

13,11.30 13,13.00

I coffee th Pete
3

13, 15.00 13, 16.00

I givelogic lecture
4

14,13.00 14,15.00

duration deadline

2.00 •

2.00

400

2.00

0.30

1.00

1.15 -

8.00 28, 17.00

2.00

2.00

0.30

1.30

1.00

2.00

28, 17.00

17,11.00

s—pctype location Impm,ce

work correspond
ence

IDEA

work meeting IDEA 8

work writing IDEA 9

work teaching IWI 10

work correspond
ence

IDEA 4

leisure performnce Botering
es

2

work meeting IWI 7

work writing IDEA 9

leisure sports OZW 2

work correction home 8

work correspond
ence

home 4

houseli
old

cleaning home 2

leisure social home 2

10

TheyTable 5.1: The do-items that are used to test the diary assistant.
represent a typical week in somebody's diary.

#

2

3

4

5

6

7

action

prepare logic
lecture

prepare math
kre

return libraiy
books

meeting with
student

homework
correction

clean bathroom

priming

from till duration deadline type

1.00 14,13.00 work

1.30 18,9.00 work

0.10 16,17.00 work

1.00 work

1.00 18,11.00 work

100 househ
old

hou
old

0.45

work teaching IDEA

menteff physeff fun

8 1 3

9 I

10 1 7

9 2

7 I

6 1

9 2

10 I 7

I 9

4 2 T
7 1

I 7 1
I I

9 2

are supposed to

szehfype location lmpm,ce meam'eff physeff farn

prepare
lecture

IDEA 8 7 1 7

prsp
lecture

IDEA 8 7 1 7

misc librazy 7 1 4 6

meeting IDEA 8 8 2 8

correction IDEA 8 4 2 5

cleaning home 5 1 7 2

garden home 3 2

Table 5.2.' The todo-iterns from the test. These are used to test the diary assistant 's planning
skills.

7

90

Generating suggestions
So we agree with the todo-agent that "prepare logic lecture" is the most urgent item on the
todo-list. Next, we can have the diary-agent generate suggestions for the todo-item. The list he
comes up with is also well informed. It consists of five suggestions instead of the usual ten.
This is because the deadline of "prepare logic lecture" is passed after generation of the second
suggestion. In such cases, the diary-agent should continue until five suggestions are collected.
Obviously, the system should avoid doing an activity after its deadline. So, hopefully, the
user-agent will select one of the two suggestion that are before the deadline. The generated
suggestions are listed below. Recall that the diary-agent jumps half the todo-item's duration
after generating a successful suggestion. All five of them are valid suggestions that do not
result in overlap with the items in Table 5.1. However, not all of them are intelligent
decisions. It is up to the user-agent and his preferences to select the best suggestion from the
list.

suggestions for todo-item #1:
• JuIyIl,ll.30
• JuIyII,12.0O
• July 13,1320
• July 14.9.00
• July 14, 9.30

Choosing a suggestion
When the list of suggestions for todo-item number one is done, the diary-agent sends it to the
user-agent who has to select the best suggestion according to his preferences (see Section
5.4). The choice he comes up with is July 11th, 11.30. We agree with this choice, because it is
as early as possible and it introduces a lot of variation (both in subtype and attributes).
Furthermore, travel time is minimal. If the human user accepts the team's choice, the todo-
item is moved to the diary, on the eleventh of July, at 11.30.

Planning two more todo-items
When we invoke another planning-cycle, the todo-agent chooses todo-item number three:
"return library books". This is also a suitable choice, because the item's deadline is close and
its effort is low. Mental and physical effort could be interpreted in two ways. First, it could
refer to the amount of effort for the entire item, which means that these attributes implicitly
hold information about the item's duration. Second, they could refer to the amount of effort
per time unit, which necessitates a separate preference for short durations. We chose to go
with the first interpretation of effort'. Consequently, since returning one's library books is
only a matter of minutes, the item has low effort values. According to Table 5.2, returning
one's library books is fairly important and fun, which also has a positive effect on the item's
urgency.

The corresponding list of suggestions, created by the diary-agent, is given below. We
encourage the reader to verif' its validity in combination with Table 5.1. The best suggestion
according to the user-agent is marked with an asterisk. This result shows that the utilized
preferences do not always lead to intelligent behaviour. The chosen suggestion involves a
considerable amount of travel time and spare time to kill. Furthermore, the chosen step size of
half a duration is too small if the todo-item takes only ten minutes. Fortunately, the user can
plan items manually whenever the team of agents makes a poor choice.

I We found that the second interpretation of effort, combined with a preference for short duration makes the

todo-agent focus too hard on easy items (short arid effortless) and thus he postpones the really urgent tasks too

much.

91

suggestions for todo-item #3:
• July 10. 13.20
• July 10, 13.25
• July 10, 13.30
• Julyll,11.50'
• JulylI,ll.55
• July 11,12.00
• July 11,12.05
• July 11,12.10
• JulylI,12.l5
• July 11,12.20

One can also select a todo-item manually. As an example, we make the team of agents plan
todo-item number six: "clean bathroom". The list of suggestions for todo-item six is
reasonably good. Since the idea should be clear by now, we refrain from providing the list. As
a final result, we want to point out that the best suggestion, according to the user-agent, is July
13th, 13.00. This is an intelligent choice, because the suggestion is as early as possible, taking
into account the other preferences. Furthermore, the choice involves no travelling whatsoever.
Variation in subtype and attributes with the prior do-item (Table 5.1, #12) is poor, but the
variation with the next do-item (Table 5.1, #13) makes up for that. This example shows quite
clearly that partial matching occurs and that it results in intelligent behaviour.

This concludes the test report and Chapter 5 as well. The sixth and final Chapter of the thesis
contains our evaluation, conclusions and future work.

92

6 Discussion and conclusions
The final Chapter of this thesis contains our final conclusions (Section 6.2) as well as an
extensive discussion concerning evaluation and future work (Sections 6.1 and 6.3

respectively). Since this is not an empirical research project, we do not include a separate
Chapter for results. Neither do we try to confirm or refute a specific hypothesis. Instead, we
evaluate our work with respect to the goals presented in Section 1.2.

6.1 Evaluation

In this Section, we first evaluate our goals (6.1.1). Then we take a look at what was
accomplished with respect to OutOfBrain as a programming environment as well as with
respect to the design and implementation of the adaptive diary assistant (6.1.2). Finally, the
design reconsiderations mentioned in Section 5.1 are further explained in 6.1.3.

6.1.1 Goal evaluation

Before we evaluate the entire array of goals defined in Section 1.2, we want to treat the two
main research questions that were raised there, in the context of our two main goals. First, we
asked ourselves the question how the QDT architecture could be extended to allow for

temporal reasoning. We found an answer in the BDI architecture. After studying both the
QDT and the BDI architecture, we came to the conclusion that they could be combined to
make a powerful system that utilizes three modalities: one for preferences, one for normalities
and one for time. This conclusion is supported by [Dastani et al. 2003] which, however, does
not provide any ideas on how to combine QDT and BDI. We, on the other hand, have actually
attempted to create such a combination. In designing it, we were reasonably successful.

The second research question we raised in Section 1.2 is whether or not the extended QDT
architecture can be implemented in OutOfBrain. Unfortunately, we cannot yet answer this
question, since QDT+ was not implemented in OutOfBrain. We did succeed in implementing
the standard QDT architecture, but the functionality for temporal reasoning did not make it

past the design stage.

The array of goals of this project can be divided into the two main ones and a collection of
secondary ones. All of them are defined in Section 1.2. The first main goal is concerned with
analysing the issues a developer has to face while creating a multiagent system. We claim that
the project is a success with respect to this goal. The project was completed in under a year by
a small team of only two developers. However, we went through all the typical stages of MAS

93

development. Consequently, we encountered many of the typical issues a MAS developer has
to face. However small, the project could possibly serve as an example for other MAS
developers. In principle, this thesis could guide the development of other multiagent systems.
It could also serve others in avoiding known pitfalls. Since MAS is a relatively young field of
research, we feel that the need for reference material is stronger than in other disciplines.

Our second main goal is to explore and extend the capabilities of OutOfBrain. We
claim that this goal was also pursued successfully. During the project, many facets of
OutOfBrain were analysed quite thoroughly. We now have a clear picture of the programming
environment's capabilities and this thesis could serve as reference material for people
working with OutOiBrain in the future. As for extending the system; when we compare the
OutOfBrain that was, at the start of this project, to the current version, we see that a great deal
of functionality has been added. Bugs were fixed, usability was improved and built-in
methods were created for arithmetic, deletion and duplication of structures' and QDT logic of
course. Section 6.1.2 further explicates these improvements to OutOfBrain.

The projects secondary goals are concerned with user modelling, agent
communication and interface design. With respect to these goals we were not so successful.
Especially the user modelling components of the diary assistant do not live up to expectations.
This deficit was caused mainly by a lack of time and theoretical background. We return to this
topic in Sections 6.1.3 and 6.3.1. As for agent communication, we did find the required time
and theoretical background. Consequently, both the design and implementation of
communication within the team of agents were worked out properly. The system we ended up
with is not that complex with respect to communication, but it does show the potential power
of the FIPA standard for agent communication. Finally, let us discuss the secondary goal
concerned with interface design. We anticipated beforehand that we would not have the time
or theoretical background to design a perfect interface. After all, this is not a study in
cognitive ergonomics. Our interface cannot be labelled as especially user-friendly, but it is
usable to say the least.

We can summarize the evaluation of our goals as follows. We wanted our project to
contain all the facets of a typical MAS development. However, most researchers focus on a
small part of a larger system. When our work is compared to other projects, it becomes
apparent that our setup was indeed too broad and diverse, especially in relation to the number
of man-hours. The goal to analyse the entire developmental process of a MAS can simply not
be unified with a good research setup. Due to the broad definition of our goals, we did indeed
fail to reach some of them. Still, we are quite content with the results concerning our main
goals: analysis of issues in MAS development (especially with respect to QDT) and
exploration and extension of OutOfBrain.

6.1.2 Results

Before we move on to the conclusions of the project, we want to evaluate our work with
respect to some more concrete topics as opposed to the much broader goals that were
evaluated above. In particular, we would like to shed some light on what was and was not
achieved during design and implementation. In this context, we evaluate our work in the
development of OutOfBrain as well as the adaptive diary assistant created in OutOfBrajn.

'One can now define data-members as being of a specific structure such as a tree or a linked list. These structure
definitions are necessary for easy deletion and duplication of these data-members. We return to this topic below.

94

U

OutOiBrain
The most important result from Rockingstone's point of view is that we created the first ever
OutOfBrain application. From this case study many new insights were gained. These will aid
the further development of OutOfBrain and future applications built with it. The OutOfBrain
graph containing the hostgraph and the three agents could serve as an example for future
OutOfBrain developers. This is an important achievement since our graph is the only complex
piece of OutOfBrain code that exists today. When combined with the overview in Section 5.2
and Appendix B as well as the manual in Appendix A, our source code could be a welcome
companion for new developers.

The largest improvement to OutOfBrain is of course that one can now build QDT-
agents in OutOfBrain. We will not get into this here. After all, the larger part of this thesis is
about this topic. Besides improving OutOfBrain with respect to agents, we made a start with
mathematics. The engine always looks for outgoing edges that are labelled with arithmetic
operators. Consequently, we can do arithmetic checks as well as arithmetic assignments
(Sections 5.11 and 5.12 of Appendix A).

The third large improvement is concerned with data-structures. It is crucial that entire
structures can be deleted and duplicated without knowing the exact nodes and edges in them.
To do this, one has to be able to define these structures (such as lists and trees or more
constrained ones like binary trees). Once the structure is defined, we can use it to duplicate or
delete data of that form. In an implication, we only have to provide the structure's root along
with the structure's name (e.g. linked list). An edge labelled 'duplicate' or 'delete' tells the
engine what to do. This improvement to OutOfBrain is not yet available in the manual
provided in Appendix A.

The fourth and final large improvement is actually a collection of smaller
improvements, concerned with user friendliness. The main usability improvements that took
place during the past year are the extended use of different colours, improved keyboard
controls and the introduction of zooming functions. It is safe to say that, although a lot
remains to be done, OutOfBrain has already surpassed the usability levels of most textual
programming environments due to the use of graphical representations. It is probably
especially useful for developers that do not have much background in computer science. We
will not get into this claim, because proving it would require another project of the same scale
as this one.

Diary Assistant
At the start of this project, there was an older version of OutOfBrain available. All we had to
do was enhance it appropriately. As for the diary assistant, we had to start from scratch.
However, we did have existing electronic diaries to use as inspiration. Section 5.6 reports on a
small test of the application. The diary assistant behaves largely as expected, making
reasonably intuitive and intelligent decisions. The intelligent parts of our application can be
seen as new results, since no existing diaries that we know of use intelligent agents. This is
probably because humans do not trust computers to plan their appointments. Humans rely
heavily on intuition during planning. Keeping one's diary is a configuration problem and it is
a well known fact that humans solve these better than computers do. However, Boutilier's
QDT logic and other cognitively inspired architectures are very intuitive, since they use
notions such as desires and preferences. We expect that when humans are asked why they
plan a certain item in a certain way, they would report reasons that show great resemblance to
the ones utilized by our diary assistant.

Our choice to use more than one agent for a single diary is a poor one from an
engineering perspective. Therefore, the development of the diary assistant stops at the end of
this project, although it is far from done. Before we move on to the next Section, we would

95

like to very briefly present the results with respect to the application. First of all, the
application is quite slow. One has to wait up to two minutes when the team of agents is busy
reasoning and communicating, which makes it less convenient in use. There are several
possible causes to this problem. The ones below are presumably all partly responsible for the
lack of speed.

First of all, the problem's fundamental complexity is exponential. Humans guide their
decisions with intuition, dramatically pruning the search-tree, so they do not suffer from the
complexity of the problem. Second, it could be that OutOfflrain itself is slow. High level
programming languages are known to be a bit slow sometimes (Python for example).
OutOfBrain is still under development and we know for a fact that the search algorithm can
still be optimized in many ways. We know that sub-graph isomorphism is NP-complete
[Andries et al. 1999]. But due to the use of a unique index for each node, complexity
approximates O(n * log(n)) which is fast for graph rewriting'.

We rule out the possibility that Delphi causes the problem. It is not as fast as C-H-, but
it is a programming language with a long history (one of the longest) and many great
developers. The third cause could be that the communication between the Delphi parts (view
and control) and the OutOfl3rain part (model) stows things down. The speed of this type of
communication was already improved during the project. but maybe it needs some more
work.

It could also be the case that our implementation of the diary assistant in OutOfl3rain
is suboptimal. Most certainly, the communication between the different agents slows the
system down substantially. Finally, the system probably performs superfluous checks and
some subroutines might be solved more efficiently altogether. This concludes the results
Section. We now discuss the design reconsiderations a bit further and after that, it is time to
present our conclusions.

6.1.3 Reasons for design reconsideration

Many components of the design were not implemented. These were already mentioned in
Section 5.1. Below, we briefly discuss the reasons for these design reconsiderations. They are
caused by three separate problems. First of all, we used an incremental design strategy. The
design changed in many ways during the implementation phase. Second, we had only one
year and two part-time developers to complete the application. The first half of this period
was used mainly for literature study and brainstorm sessions, which left only half a year for
design and implementation. Our third problem is that we lack the theoretical background on
the topic of learning in a qualitative MAS architecture. There is probably more than enough
good literature on BDI-learning, but since QDT is less popular, we did not find appropriate
articles on learning. The architecture we used for our design is based on QDT, but we added
functionality for time and events from BDI. This makes good literature even harder to come
by. Then again, if such literature did exist, our design would not have been a novelty.

The BDI components that we were supposed to add to the QDT architecture did not
take solid form. This is most regrettable, since a general purpose MAS architecture must be
able to deal with time and events. An agent should be able to guide his decisions by the
history of percepts as opposed to only the last observation. According to [Russell and Norvig
1995] as well as [Wooldridge 2002], all but the simplest agent types possess a history of
percepts. Furthermore, if general purpose learning is the goal, the analysis of past states and
events is absolutely indispensable (in most domains). For these reasons, we believe that the

With respect to worst case time complexity, sub-graph isomorphism is still NP-complete. It is the average time
complexity that is now tractable, thanks to the unique indexing approach.

96

—

choice to add time and events to QDT is a good one. This is affirmed by Mehdi Dastani and
his colleagues. They claim that QDT and BDI can (and should) be combined in several ways,
without fear of incompatibility [Dastani et al. 2003].

Now, why is it that QDT(+) is not used extensively in our diary assistant? The system
uses around twenty preferences, but no normalities or time whatsoever. Apparently, it is

harder to define these things than we supposed. It proved to be even harder to distill
preferences and normalities from a text-interface. The intuitive nature of QDT(+) makes the
gap between raw input and workable formulas a great deal smaller. Nevertheless, we
underestimated this part of the problem. The importance of the modality time for a general
purpose MAS architecture was already discussed above. The necessity of normalities is
comparably great. In combination with preferences, it allows agents to behave rationally using
a qualitative version of Savage's expected utility maximization. We do believe however, that
the use of normalities can legitimately be avoided in the domain of diary-keeping.

6.2 Conclusions

This project follows a protocol that is theoretical in nature. We do not perform any empirical
research and we have no hypotheses to test. Consequently, the conclusions in this Section are
based on other, less exact measures. In short, the two meta-goals of this project are for me to
learn about MAS development and for Rockingstone to get some hands-on experience with
OutOfBrain. We argue below that both these meta-goals were reached. From the goal
evaluation in 6.1.1, we arrive at the following conclusions.

Issues in MAS development
The question we raised in the context of MAS development issues is: "How can the QDT
architecture be extended to allow for temporal reasoning?". The answer is that it can be done
by combining QDT with the temporal component of BDI. We did not prove that it can
actually be implemented in practice, but neither did we encounter a reason to assume the
contrary.

As for the context of this question, we found that it is hard to design and implement a new
architecture that is general purpose and fit for a specific application at the same time. Luckily,
there are many existing implementations of MAS architectures to choose from, the BDI
architecture in particular has been implemented successfully several times. Of course, we did
not actually create a new architecture. It was more a matter of putting two existing ideas
together. It would be an impossible task to list all the issues one has to face during MAS
development. But many of the ones we encountered have been reported upon in this thesis.
Before we move to our conclusions with respect to OutOfBrain, we put forward some
conclusions concerning the design of MAS architectures.

One of the more interesting issues we encountered is that it can be hard to maintain
qualitativity. The diary assistant is less qualitative than we would like it to be. This is in part
due to the fact that QDT is fundamentally less qualitative than BDI. However, it is also
caused by the translation of possible world orderings to integer scales and their multiplication
to obtain a measure of expected utility. Furthermore, the domain specific information is
fundamentally quantitative, since the agents have to compare times, dates and integer
attributes (importance, mental effort, physical effort and fun). Despite these compromises, we
conclude that our approach is better than Savage's classical method in terms of complexity
and intuitiveness.

97

Another interesting issue arises in the combination of preferences and normalities into a
measure of expected utility. As stated before, we believe that the way we combine them is
equivalent to the proposed method in [Boutilier 1994] (compare Sections 4.3.2 and 4.3.3 to
Definition 2.18). QDT is nothing more than two CO models combined. There are only two
differences between preferences and normalities. The first is simply their interpretation. The
second is that they are treated differently when combined in Definition 2.18. First, the default
closure of the knowledge base is determined. Then, this closure is considered to be true
knowledge and along with the preferences, action set dominance is calculated. We adopted
this priority of normalities over preferences in our OutOiBrain implementation of QDT.

An issue that should also be mentioned here is that we had trouble finding a good task
distribution. We found that which agent does what is far from trivial and we switched
strategies several times before finding a workable task distribution. The agents have access
and control over part of the environment and communication is both costly and complicated.
Therefore one should minimize the amount of communication through careful consideration
over who does what. [Dignum et al. 2001] discusses the topic of dynamic task allocation. This
is an interesting topic, but it is beyond the scope of this project, since we have a fixed team
where every agent has a fixed set of tasks.

Another interesting problem we encountered, the last one we put forward here, is
determining the amount of parallelism in the system. The absolute minimum here is three
parallel processes, one for each agent. Initially, each agent consisted of several processes, but
we found that this complicates things unnecessarily. The advantage of having only one
process per agent is that it is clear which state an agent is in. Consequently, the dynamics of
the system are easier to comprehend. Furthermore, we get an environment that is less dynamic
and hence easier to handle. If there is parallelism in each agent, the environment cannot only
change unexpectedly through actions of others, but also through actions in other processes
within the same agent. This is a problem that has to be reckoned with. The advantage of
simulated parallelism within agents lies in the time advantage. An agent can keep working
while waiting for a reply. The speed of the entire team would not suffer much from one
agent's slow reply. Needless to say, true parallelism makes the time advantage even greater.
We now move on to our conclusions with respect to OutOfBrain.

OutOfBrain
Next we devote some attention to our conclusions on exploring and extending the capabilities
of the OutOfBrain programming environment. The question that was raised in this context is:
"Can the QDT architecture, extended with a temporal modality, be integrated into
OutOfBrain?" Unfortunately, we cannot provide an answer. We can say however that QDT as
it was designed by Craig Boutilier was successfully implemented and is now an integral part
of the OutOfBrain programming environment.

As far as exploring the capabilities of OutOiBrain is concerned, we had an entire island of
unexplored territory to digest'. The environment turns out to be what it claims: A versatile
graphical programming environment for artificial intelligence programming. It has some
particularly strong points that we would like to emphasize a bit.

First of all, it is easy to learn. Anyone with some programming experience can get
used to it in a couple of weeks. Creating software is no longer an activity for a small elite. As
more and more people start doing it, there is a strong demand for easily accessible
programming languages. We feel that OutOfBrain could be such a language and it might also
serve educational purposes some day, because of its intuitiveness. The graphical

Tim Samshuijzen was of course very well acquainted with OutOiBrain at the start of this project. Without his
guidance we would not have come very far.

98

representations probably provide the creative process with an extra dimension for people that
are visually oriented (as opposed to auditory oriented). The type of graphs used in OutOfBrain
and other graph rewriting mechanisms prove to be a universal data-structure that is easy to
comprehend. Furthermore, we think that OutOfBrain is relatively user friendly compared to
textual languages. This holds especially for developers without programming experience.
Many of the available packages for agent programming (at a higher level of abstraction) also
use fairly complex representations. However, there are exceptions such as the highly
comprehensible environment 3APL [Hindriks et al. 1999].

We expect that the most promising future for OutOfBrain lies in hybrid systems like
our diary assistant. OutOfBrain simply lacks the expressive power to handle all the
components of a typical piece of software. In such hybrid settings, OutOfBrain should be used
to implement internal representations and reasoning (model), while a textual language takes
care of input and output. Reasoning in OutOfBrain is well suited for abstract representations,
but a language like C++, Java or Delphi should be used to convert the raw data coming from
the environment (real or virtual) to logical formulas. A textual language should also be used
to handle view and control of the application, so that existing libraries can be used.

Another strong point of OutOfBrain is that it allows for distributed development and
run-time programming. The system uses client/server communication for several reasons.
First of all, it is used for communication between view and model and between model and
control. Any programming language can be in a hybrid setting with OutOfBrain thanks to the
TCP/IP communication standard. This can either take place on one and the same computer
(different ports on 127.0.0.1) or on different computers or robots connected via internet.
Second, TCP/IP is used for communication between the developer tool and the running
application during run-time programming, allowing for a convenient way of debugging.
Finally, the client/server setup allows for several people to connect their developer tools to the
same application, thus leading to distributed development.

Despite the versatility and power of OutOfBrain, there was a lot of room for
improvement at the start of this project. During the past year, OutOfBrain has been extended
in many ways. Bugs were fixed, usability was improved and built-in methods were created for
QDT logic, arithmetic and deletion and duplication of structures. Of course, a lot of work still
remains to be done (Section 6.3.2).

6.3 Future work

Driven by our diverse array of goals and motivations, we have come across many new
insights. Most of them are only new to ourselves, but some of them could be useful to others
as well. Because of the broad scope of the project, we touched upon many sidetracks, not
nearly exploring them all. Consequently, we have many ideas for future work. First, we
present a general view of expected future work related to our endeavour. Then, we discuss
some more concrete potential future work with respect to the different branches of our project.

First and foremost, we expect that a QDT+ like architecture should and will be
properly designed and implemented. BDI is currently the leading MAS architecture and most
researchers will probably stick to that. However, a change of food whets the appetite and it
could be risky to set our hopes on only one approach. BDI is a general purpose architecture,
but it could turn out that an architecture based on QDT will perform better in certain domains.
This claim is mainly backed by the fact that BDI is inseparable from binary mental attitudes
which leads to non-deterministic choices. From a cognitive standpoint, this is a good and
natural property. However, from an engineering point of view, it is sometimes desirable to

99

resolve such conflicts in an informed way. QDT is more capable of doing so. More on future
work with respect to QDT+ in Section 6.3.1.

Second, the OutOfBrain programming environment is prone to spread its wings and
hopefully it will enjoy wide support. The environment 3APL, developed by Dastani and
colleagues [Hindriks et al. 1999], should serve as an example to Rockingstone in the years to
come. The development of yet another MAS programming environment might seem futile at
first, but OutOfBrain has different capabilities. The environment 3APL is entirely devoted to
implementing reasoning agents. OutOfBrain is more suitable for implementing other
components of an application as well (arithmetic and complex data-manipulation for
example). Section 6.3.2 contains some concrete ideas for improving OutOfBrain.

Our endeavours toward developing an adaptive diaiy assistant were not so fruitful.
Our approach is poor from an engineering perspective, because a single diary assistant is not a
true MAS; it is not distributed in space. Therefore, it should not be run by a team of agents.
Consequently, this particular diary assistant will not enjoy any future work. Concerning future
work, we feel that it is inevitable that MAS and interconnected PDA diaries will form a
healthy marriage in the near future. See Section 6.3.3 for some more thoughts on that.

6.3.1 Improvements to QDT+

During our discussion of future work, we focus on QDT+, because scientifically speaking, it
is the most interesting branch of the project. We stand by the claim that QDT is a good
starting point for a general purpose MAS architecture. The negative evaluation of our
implementation in Section 6.1 does not mean that this hope should be abandoned. It only
means that a lot of work remains to be done. Other researchers should see the potential and
join the QDT movement. So far, its big brother BDI has drawn away most of the attention.

But how does one go about creating an architecture like QDT+? In particular, how can
we develop an architecture that utilizes preferences and normalities as well as time? Using
BDI's temporal modality seems to be a good move. Our own findings, combined with
[Dastani et al. 2003] lead to this conclusion. Obviously, the history of the environment and
the agents needs to be stored in order to achieve such a tn-modal system. We have no doubt
that this can be done. In fact, Section 4.2.1 suggests that it is not so hard to achieve. Once we
have such a storing mechanism, combined with the two other modalities, preference and
normality', the question rises of how to derive preferences and normalities (possibly
containing temporal clauses) from these histories of percepts.

We had hoped to answer this question, but we can only guess at it, due in part to the
shortage of time and literature on QDT-like learning. It proved to be very difficult to extract
useful knowledge from histories of percepts. The intuitive nature of the architecture partly
bridges the gap between inputs and new knowledge. In particular, it allows user and computer
to understand each other, because preferences, normalities and time are meaningful to both.
This is nice, but the question of how to gain new knowledge from histories of percepts
remains. The answer depends partly on the mode of input. Are we using natural language, a
formal syntax or perhaps just buttons and single-word input-fields? The first step toward the
mapping of percept histories to new knowledge is to turn raw input into meaningful logical
formulas. To do this in a general purpose way turned out to be too much to hope for in the
scope of this project. We used ad hoc, domain specific solutions instead.

'Recall that in our design, time is a tree of possible worlds that branches into the future and is linear in the past.
Each possible world in this tree has two more modalities, so there is an extremely wide variety of sentences in
the language. It ranges from first order statements about the environment to sentences that combine temporal
operators with mental attitudes.

100

Once this obstacle is out of the way (rendering the input suitable for OutOfBrain or another
agent programming language) there are at least two ways to proceed. One possibility is to
allow agents to add new preferences and normalities to their knowledge base. It is the best
solution, but also the hardest one to achieve. It would allow an agent to learn how to behave
in novel situations but it would require tremendous intelligence. Agents would have to be able
to learn the meaning of new symbols, which is problematic, to say the least. A different
approach is to make sure that all possible preferences and normalities are already present after
initialization, so every rule an agent could possibly want to utilize is there from the beginning.
However, only the ones in some initial subset and the ones that follow from experience are
activated. The rules can be turned on and off, but they could also be outfitted with dynamic
weights that determine how strong the preference or normality is. This latter option
compromises the qualitativity of the system and the former variation is therefore preferred in
most cases. This learning strategy would only work in domains where all possible preferences
and normalities can be determined during design time. In many settings, this requirement is
not met, not in the real world and not in many experimental settings and virtual worlds either.
After all, MAS have to be geared to operate in dynamic, uncertain environments.

6.3.2 Improvements to OutOfBrain

Rockingstone aims to create a full-fledged graphical programming environment for intelligent
agents. The release date of OutOfBrain 1.0 has not yet been announced, since a lot of work
remains to be done. This Section explains how OutOfBrain will be improved in the years to
come.

A piece of future work directly related to this project is to create a storing mechanism for the
history of an agent's percepts and inner states. As stated before, storing histories is an
absolute necessity for intelligent agents. Thanks to the current project, the development of
such a storing mechanism for OutOfBrain is closer than ever. First of all, we provide an
abstract design for it in Section 4.2. Second, we determined and discussed some issues
concerning temporal reasoning.

Another topic for future research and development is OutOfBrain's search engine. Due
to the hacks discussed in Section 3.1.7, the current engine is considerably faster than that of
general graph rewriting. However, a lot of work remains to be done to optimize the engine.
Since OutOfBrain's complexity is on the edge of tractability, this topic should enjoy a lot of
attention from future OutOfBrain developers.

The third opportunity for future work we would like to put forward is improving the
clientlserver communication (Appendix A, Chapter 7). In particular, it should be speeded up.
TCP/IP communication forms an integral part of the OutOfBrain environment. It is used for
communication between the different parts of an application (The Delphi components and the
OutOfBrain components in our case). We think that this problem is partly responsible for our
adaptive diary assistant's lack of speed (see Section 6.1.2). In the future, TCP/IP will also be
used for distributed development. Developers from different countries will then be able to
team up and work on the same OutOfBrain program simultaneously. The client/server
component also has a promising future in true MAS settings.

There are two more improvements to OutOfBrain we would like to mention here.
Once the first retail version of OutOfBrain is released, people should start working on
libraries containing predefined functions, both on the Delphi level (under water) and the
OutOfBrain level. This would allow OutOfl3rain developers to make use of existing view
components, control components, complex data-manipulation methods and hardware access

101

methods. Finally, the usability of the OutOfBrain toolbox is apt to be improved with
sophisticated editing and viewing capabilities. It should be clear that there is much more to
say about improvements to OutOfBrain. However, we choose to leave at this for now.

6.3.3 A network of personal digital assistants (PDA's)

Now that future work with respect to OutOfBrain and QDT+ is covered, we would like to
shed some light on our expectations concerning electronic diaries. As stated before, a diary
should be run by a single agent that can use all the available data instead of by a team of
agents with partial access and control. The MAS approach should only be used in true MAS
situations (distributedness, differing goals and cooperation or competition). A single diary is
clearly not such a situation. We only took the MAS approach, because it is interesting from a
scientific point of view.

Now consider the situation where there is an entire network of adaptive diary
assistants. Each diary is controlled by a single agent, but since there are many geographically
distributed diaries, we find ourselves in a true MAS setting. The requirement of
distributedness is met, because every agent is situated on a physically separate PDA. There
are differing goals because each agent represents a different person. Finally, we can have both
cooperation and competition in this setting. Agents can work together by bringing their
masters together in teams. But they can also negotiate about making appointments. In such a
setting, the personal agents have to deal with team formation and dynamic task allocation
[Dignum et al. 2001].

Imagine a company where everybody has such a personal assistant. The company's
leaders are having a meeting in the boardroom. Since they are all extremely busy, it is hard to
come up with a suitable date and time for the next meeting. This is when the chairman grabs
his or her PDA and presses a single button. The agents wake up and start negotiating. The
next meeting has to be compatible with as many of the board members' appointments and
preferences as possible. The agents also communicate with the digital assistants of the
colleagues that are not in the room. The different divisions of the company could act as teams,
the members always considering each other's preferences. Not everyone will be satisfied by
the solution of the agent network. But hopefully, the new appointment will be close to optimal
for as many people as possible. We claim that such a multiagent system will soon move from
the realm of science fiction to reality.

The adaptive diary assistant created during this project can be improved in many ways, but
since we decided not to continue its development, we leave those to the reader's imagination.
This was the final Chapter of the thesis. All that remains are the references and the
appendices.

102

References

Aarts, E., Marzano, S. (2003) The New Everyday: Views on Ambient Intelligence. 010
Publishers, Rotterdam, The Netherlands

Andries, M., Engels, G., Habel, A., Hoffinann, B., Kreowski, H. J., Kuske, S., Plump, D.,
SchUrr, A., Taentzer, G. (1999) Graph transformation for specification and programming.
Science of Computer Programming, vol. 4, no. 1, pp. 1-54

Baader, F., Horrocks, I., Sattler, U. (2005) Description logics as ontology languages for the
semantic web. In: Hutter, D., Stephan, W. (edc.): Mechanizing Mathematical Reasoning:
Essays in Honor of Jorg Siekmann on the Occasion of His 60th Birthday (number 2605 in
Lecture Notes in ArtfIcial Intelligence), pp. 228-248. Springer-Verlag, Berlin, Germany

Blostein, D., Fahmy, H., Grbavec, A. (1995) Practical use of graph rewriting. Technical
report No. 95-373, Computing and Information Science, Queen's University, Kingston

Boella, G., Hulstijn, J., Van Der Torre, L. (2005) Decision-theoretic deliberation in resource
bounded self-aware agents. In: Mcllraith, S., Peppas, P., Thielscher, M (eds.): Proceedings
of the Seventh International Symposium on Logical Formalizations of Commonsense
Reasoning, Corfu, Greece, editors, pp. ?-?. Dresden University Technical Report

Boutilier, C. (1994) Towards a logic for qualitative decision theory. In: Doyle, J., Sandewall,
E., Torasso, P. (eds.): Proceedings of Principles of Knowledge Representation and
Reasoning, pp. 75-86. Morgan Kaufmann Publishers, San Mateo, California, USA

Bratman, M. E. (1987) Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, Massachusetts, USA

Broersen, J., Dastani, M., Hulstijn, J., Van Der Torre, L. (2002) Goal generation in the BOlD
architecture. Cognitive Science Quarterly, vol. 2, no. 3-4, pp. 428-44 7

Cohen, P. R., Levesque, H. J. (1990) Intention is choice with commitment. Artjflcial
Intelligence, no. 42, pp. 2 13-261

Dastani, M., Hulstijn, J., Van Der Torre, L. (2005) How to decide what to do? European
Journal of Operational Research, vol. 160, no. 3, pp. 762-784

Dignum, F., Dunin-Keplicz, B., Verbrugge, R. (2001) Creating collective intention through
dialogue. Logic Journal of the JGPL, vol. 9, no. 1, pp. 289-303

Doyle, J., Thomason, R. H. (1999) Background to qualitative decision theory. Al Magazine,
vol. 20, no. 2, pp. 55-68

Dunin-Kçplicz, B., Verbrugge, R. (2002) Collective intentions. Fundamenta Informaticae,
vol. 51, no. 3, pp. 271-295

Dunin-Kçplicz, B., Verbrugge, R. (2004) A tuning machine for cooperative problem solving.
Fundamenta Informaticae, vol. 63, no. 2-3, pp. 283-30 7

103

Foundation for Intelligent Physical Agents (2001) FIPA ACL message structure specification.
Technical Report XC0006I

Fong, T., Nourbakhsh, I., Dautenhahn, K. (2003) A survey of socially interactive robots.
Robotics and Autonomous Systems, no. 42, pp. 143-166

Hindriks, K.V., De Boer, F.S., Van Der Hoek, W., Meyer, J.-J. Ch. (1999) Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems, vol. 2, no. 4, pp. 357-
401

Jensen, K. (1992) Coloured Petri Nets. Basic Concepts, Analysis, Methods and Practical Use.
Volume 1: Basic Concepts. Springer-Verlag, Berlin, Germany

KahI, W. (2002) A relation-algebraic approach to graph structure transformation. Technical
report No. 2002-03, Computer Science, Bundeswehr University, Munchen

Lewis, D. (1973) Counterfactuals. Oxford University Press, Oxford, UK

Luck, M., McBumey, P., Shehory, 0., Willmott, S. (2005) Agent Technology: Computing as
Interaction. University of Southampton Publishers, Southampton, UK

Nardi, D., Brachman, R. J. (2002) An introduction to description logics. In: Baader, F.,
Calvanese, D., McGuinness, D. L., Nardi, D. Patel-Schneider, P. F. (eds.): The Description
Logic Handbook, pp. 5-44. Cambridge University Press, Cambridge, UK

Pearl, J. (1990) System Z: a natural ordering of defaults with tractable applications to default
reasoning. In: Vardi, M (ed.): Proceedings of Theoretical Aspects of Reasoning about
Knowledge, pp. 12 1-135. Morgan Kaufmann Publishers, San Mateo, California, USA

Ramsey, F. P. (1926) Truth and probability. In: Mellor, C. (ed.): Foundations: Essays in
Philosophy, Logics, Mathematics and Economics, pp. 58-100. Routledge and Kegan Paul,
London, UK

Rao, A. S., Georgeff, M. P. (1991) Modelling rational agents within a BDI-architecture. In:
Allen, J, Fikes, R., Sandewall, E. (eds.): Proceedings of the Second International Conference
on Principles of Knowledge Representation and Reasoning, pp. 4 73-484. Morgan Kaufinann
Publishers, San Mateo, California, USA

Rao, A. S., Georgeff, M. P. (1995) BDI agents: from theory to practice. In: Lesser, V. (ed.):
Proceedings of the First International Conftrence on Multiagent Systems, pp. 312-3 19. AAAI
Press/MIT Press, San Fransisco, California, USA

Reiter, R. (1980) A logic for default reasoning. Artificial Intelligence, no. 13, pp. 81-132

Rich, E. (1999) Users are individuals: individualizing user models. International Journal on
Human-Computer Studies, no. 51, pp. 323-339

Roediger, H. J. (1990) Implicit memory: retention without remembering. American
Psychologist, vol. 45, no. 9, pp. 1043-1056

104

Rumbaugh, J., Booch, 0., Jacobson, 1. (1998) Unfled Modelling Language Reference
Manual. Addison-Wesley Professional, Boston, Massachusetts, USA

Russell, S., Norvig, P. (1995) Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, New Jersey, USA

Savage, L. (1954) Foundations of Statistics. Dover Publications, Mineola, New York, USA

Searle, J. R. (1969) Speech Acts. An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge, UK

Simon, H. A. (1987) Bounded rationality. In: Eatwell, J., Miligate, J., Newman, P. (eds.):
The New Palgrave: A Dictionary of Economics, pp. ?-?. Macmillan Publishers, Basingstoke,
UK

Stone, P., Veloso, M. (2000) Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, vol. 8, no. 3, pp. 345-383

Tan, S.-W., Pearl, J. (1994) Qualitative decision theory. In: Editors unknown: Proceedings of
the Twelfth National Conference on ArttfIcial Intelligence, pp. 928-933. AAAI Press/MIT
Press, San Fransisco, California, USA

Taatgen, N. A., Lee, F. J. (2003) Production compilation: a simple mechanism to model
complex skill acquisition. Human Factors, vol. 45, no. 1, pp. 61-76

Weyns, D., Holvoet, T. (2004) A coloured Petri net for regional synchronization in situated
multi-agent systems. In: Editors unknown: First International Workshop on Petri Nets and
Coordination, pp. ?-?. PNC, Bologna, Italy

Wooldridge, M. (2002) An Introduction to Multiagent Systems. Wiley & Sons Press,
Hoboken, New Jersey, USA

105

C
ontents

1 Introduction

2 T
he O

utO
fB

rain A
rchitecture

A
ppendix A

: O
utO

fB
rain m

anual

O
utO

fB
rain

R
eference M

anual
version 1.01

R
ocklngstone R

obotics B
y.

W
ageningen, T

he N
etherlands, 2006

3 T
he O

utO
fB

rain D
eveloper (O

O
B

D
)

3.1 O
penIng the O

O
B

D
 application

3.2 C
reating a new

 graph
3.2 O

pening a graph file
3.3 S

avIng a graph to file
3.4 E

xitIng 0080
3.5 S

crolling though
a

graph
3.6 Z

oom
Ing out

4 E
ditIng graphs in O

utO
fB

raln D
eveloper

4.1 A
ddIng a vertex

4.2 D
eleting a vertex

4,3 M
ovIng a vertex

4.4 Labeling a vertex
4.5 S

electIng and deselectlng m
ultiple vertices

4.6 M
ovIng m

ultiple vertices
4.7 C

opyIng and pastIng
4.8 A

ddIng an edge
4.9 D

eleting an edge
4.10 M

oving an edge
4.11 N

am
ing an edge

4.12 N
avIgating across edges

5 T
he O

utO
fB

rain V
irtuai M

achine (O
O

B
V

M
)

5.1 <
group>

5.2
<
p
r
o
c
e
s
s
>

5
.
3

<
b
r
a
n
c
h
>

5
.
4

<
e
x
e
c
u
t
e
>

5
.
5

<
d
e
b
u
g
_
p
a
u
s
e
>

a
n
d

<
d
e
b
u
g
_
s
t
e
p
>

5
.
6

<
I
m
p
l
i
c
a
t
i
o
n
>

5
.
7

<
condItion>

5.8 <
w

ait>
5.9 <

candidate>
 edges

5.10 <
reference>

 and <
m

atch>
 edges

5.11 C
onditional operators

5.12 A
ssIgnm

ent operators

6 O
ut0fB

rain A
gents

6.1 T
he A

gent M
anager

6.2 <
voluntaries>

6.3 <
Involuntarles>

106
107

6.4 <
constraints>

6.5 <
consistencies>

6.6 <
predictions>

6.7 <
preferences>

6.8 <
dislikes>

6.9 T
he single-goal-agent

6.10 T
he agent types

6.11 A
n exam

ple of an agent

7 T
C

P
 com

m
unication

7.1 <
tcpserver>

7.2 <
tcpclient>

7.3 S
ending and receiving data

1 IntroductIon

O
utO

fB
rain is an A

! developm
ent tool based prim

arily on the principles of
graph rew

riting. U
nlike m

ost other program
m

ing environm
ents,

O
utO

frain is not code-oriented. P
rogram

m
ing and debugging Is done In

run-tim
e w

ith O
utO

fB
rain D

eveloper, a graph-oriented graphical user
interface w

hich ables the program
m

er to change the running program
w

ithout having to shut it dow
n or having to recom

pile. T
he client-server

architecture allow
s m

ultiple program
m

ers to w
ork on the sam

e 'source'
sim

ultaneously and each program
m

er can directly follow
 the w

ork of other
program

m
ers. T

he non-code ID
E

 m
akes it easy for developers and

researchers to com
m

unicate their ideas and observations. O
utO

fB
rain is

an executable graph com
bined w

ith the principles of graph-rew
riting and

autonom
ous agent technologies. M

ultipie agents can be created to w
ork

together to solve com
plex problem

s and achieve goals.

T
he philosophy behind the use of graphs as opposed to code, is that all

data structures can be represented as graphs. In general, code-oriented
data structures are lim

ited to records, collections, lists, trees, and
com

binations of these. G
raphs, how

ever, can directly describe all types of
structures in a m

ore direct and intuitive w
ay. T

he developers of
O

utO
fB

rain expect the advantages of the use of graphs to becom
e

apparent w
hen dealing w

ith com
plex problem

s, such as those present in
the field of A

l.

108
109

2 T
he O

utO
fB

rain architecture

T
he graph-structures in O

utO
fB

rain are stored in an in-m
em

ory graph
database. T

he content of this database is view
able w

ith the O
utO

fB
rain

D
eveloper (O

O
B

D
). T

he sam
e content Is parsed and processed by the

O
utO

fB
raln V

irtual M
achine (O

O
B

V
M

), integrated into the O
utO

fB
rain

S
erver. M

ultiple O
O

B
D

 clIents can connect to the server, allow
ing m

ultiple
program

m
ers to w

ork on the sam
e "source". Interfacing w

ith applications
is done via T

C
P

, as T
C

P
 servers and clIents can be constructed in the form

of graphs.

3 T
he O

utO
fB

rain D
eveloper (O

O
B

D
)

T
his chapter describes the available com

m
ands for opening, saving,

creating and navigating graphs in O
utO

fB
rain D

eveloper (O
O

B
D

). O
O

B
D

is a stand-alone version of O
utO

fB
raln, com

plete w
ith view

er/editor and
integrated O

O
B

V
M

. T
here is also a client version called O

utO
fB

rain
D

eveloper C
lIent (O

O
B

D
C

), w
hich can connect to the server version of the

O
O

B
V

M
. In this chapter, how

ever, w
e just describe the O

O
B

D
 program

.

3.1 O
pening the O

O
B

D
 application

R
un the applIcation "outofbrain.exe" to launch O

O
B

D
. B

y default, the
program

 w
ill open the graph file nam

ed "m
aln.gd", If no such fIle exists,

an em
pty graph nam

ed "m
aln.gd" Is created, but not saved to disk. O

O
B

D
is a sim

ple interface w
ith just a sIngle m

enu called "F
ile". T

he w
hite

backg round Is the graph itself.

3.2 creating a new
 graph

T
o create a new

 graph, select "N
ew

" in the F
ile m

enu. O
O

B
D

 w
Ill prom

pt
to ask w

hether the currently opened graph should be saved. P
ress the

appropriate button and a new
 em

pty graph w
ill be created called

"untitled.gd". A
t this point the new

 graph is not yet saved to disk.

3.2 O
penIng a graph file

T
o open a graph file, select "O

pen" In the F
ile m

enu (or press C
trl-N

). A
file-dialog w

ith the caption "O
pen" w

ill be displayed. S
elect the desired

graph file and press the O
pen button. B

efore opening the selected graph
file, O

O
B

D
 w

ill prom
pt to ask w

hether the currently opened graph should
be saved.

I.
--______

110

3.3 S
aving a graph to file

T
o save graph to disk, select "S

ave" in the F
ile m

enu (O
r press C

trl-S
). If

the graph is titled "untitled.gd", then O
O

B
D

 w
ill display a "S

ave as" dialog.
T

o save the graph under a different file nam
e than It currently has, select

"S
ave A

s..." in the F
ile m

enu. O
O

B
D

 w
ill display a "S

ave as" dialog.

Ill

F
igure 2.1 T

he O
utO

fB
raln architecture

3.4 E
xIting O

O
B

D

T
o exit 0060, select "S

ave and exit" In the F
ile m

enu (or press C
trl-E

).
O

O
B

D
 w

ill save the changes to the graph rile and exit w
ithout prom

pting.
T

o exit O
O

B
D

 w
ithout saving changes to the graph file, select "E

xit
w

ithout saving" in the F
ile m

enu (or press C
trl-W

). A
nother m

ethod to
close O

O
B

D
 is to press the C

lose in the system
 m

enu or by pressing the
close-cross button in the upper right corner. T

his w
ay of closing w

ill save
the changes autom

atically before shutting dow
n.

3.5 S
croU

lng through a graph

If a graph does not fit w
ithin the screen w

indow
, 0060 w

ill show
scrollbars on the bottom

 and right sides of the w
indow

. T
hese scrollbars

w
ill adjust autom

atically w
hen the low

est vertex or the far-right vertex Is
m

oved. T
o m

ove the w
indow

 over another part of the graph, click and
drag the appropriate scrollbars. T

he m
ouse-w

heel operates the vertical
scrolibar. T

he m
ouse-w

heel operates the horizontal scrolibar w
hile holding

dow
n the C

trl-key. T
o m

ove the w
indow

 over the graph using the
keyboard, use the arrow

 keys. T
o m

ove the w
indow

 up or dow
n over the

graph, use the P
age up and P

age dow
n keys, respectively. T

he H
om

e key
positions the w

indow
 at the top of the graph. T

o posItion the w
indow

 at
the top-left-hand corner of the graph, press C

trl-H
om

e. T
he E

nd key
positions the w

indow
 at the bottom

 of the graph.

3.6 Z
oom

Ing out

G
raphs can becom

e quite large, so it Is som
etim

es difficult to navIgate to
the desired section. In this situation the zoom

-function can be helpful. T
o

zoom
 out, press the Z

-key on the keyboard. T
he 006D

 w
ill then show

 the
graph w

ith a zoom
-out-factor of 4. A

t this scale, the labels are not show
n

and cannot be edited. T
he border of the original view

-w
indow

 is displayed
as a rectangle. T

o return to the original unzoom
ed view

-w
indow

, press the
R

-key on the keyboard. W
hen m

oving the m
ouse over the zoom

ed-out
graph, a sim

ilar rectangle Is displayed around the m
ouse cursor. T

o zoom
In onto this rectangle, either press the right m

ouse button or press the Z
-

key. T
o zoom

 out tem
porarily, hold dow

n the right m
ouse button. T

he
view

-w
indow

 rectangle can then be m
oved to another area, and w

ill
becom

e the new
 view

 w
indow

 w
hen releasing the right m

ouse button.
W

hen in zoom
-out m

ode, you can center the view
 w

indow
 rectangle by

pressing the M
-key on the keyboard.

Il?
113

F
igure 3.1 Z

oom
Ing out.

4 E
diting graphs in O

utO
fB

rain D
eveloper

4.5 S
electIng and desslectlng m

ultiple vertices

T
his chapter describes the available com

m
ands for altering graphs.

W
henever the text uses the term

s "click" or "m
ouse-button", the left-

m
ouse button is Im

plied. W
henever the text uses the term

 "key", a button
on the keyboard Is Im

plied. T
he chosen term

inology for graph com
ponents

are "vertices" and "edges". In O
utO

fB
rain edges are directional, directed

from
 the "from

-vertex" and directed to the "to-vertex". M
ultiple edges

betw
een vertices are supported. E

dges w
ith the sam

e from
-vertex and to-

vertex are also supported. "D
angling edges" are not supported. V

ertices
and edges each have a one-line textual label. A

n edge w
ith from

-vertex A
and to-vertex B

 is said to be A
's "from

-egde" and B
's "to-edge".

4.1 A
dding a vertex

T
o add a vertex, place the m

ouse cursor at the position w
here the vertex

Is to be placed and press the Insert key. A
 new

 vertex w
ill be created w

ith
an em

pty label.

4.2 D
eletIng a vertex

T
o delete a vertex, first click the appropriate vertex. B

e sure to click the
center part of the vertex, and not the black border. T

he vertex now
 has a

red border show
ing that it is selected. T

o delete the selected vertex, click
the D

elete key. T
he D

elete key deletes all selected vertices. D
eleting a

vertex w
ill autom

atically delete all connected edges.

4.3 M
oving a vertex

T
o m

ove a vertex, click and drag the appropriate vertext w
ith the m

ouse.
B

e sure to click on the center part of the vertex, and not the black border.

4.4 Labeling a vertex

E
ach vertex has a label. T

o assign or change the label-text, click the label
w

ith the m
ouse. A

 blinking caret w
ill display, allow

ing text to be entered
w

ith the keyboard. O
nce edited, press the E

nter key to save the entered
text. A

lternatively, click the m
ouse outside the label to save the text. T

o
cancel the editing, press the E

scape key to restore the original label value.
W

hen the caret show
s, C

trl-C
 w

ill copy the text onto the clipboard. C
trl-C

w
ill replace the label-text w

ith that on the clipboard.

T
o select a single vertex, sim

ply click the vertex. B
e sure to dick on the

center part of the vertex, and not the black border. S
electing a vertex In

this w
ay w

ill deselect any other selected vertices. T
o select m

ore vertIces,
hold the C

trl key w
hile clicking vertices one-by-one. T

o deselect a vertex,
hold the C

trl key w
hile clicking the selected vertex. T

o deselect all
vertices, click anyw

here in an em
pty (w

hite) area.
A

nother m
ethod for selecting a group of vertices that are positioned close

to each other, is to position the m
ouse cursor over a w

hite area, hold
dow

n the m
ouse-button, and drag the red box that appears over the

group of vertices. O
nce all desired vertices are selected, release the

m
ouse-button. T

his also w
orks In zoom

-out m
ode.

4.6 M
oving m

ultIple vertices

T
o m

ove a group of selected vertices, dick and drag any one of the
selected vertices, drag the group to the desired position and release the
m

ouse-button. T
his also w

orks In zoom
-out m

ode.

4.7 C
opying and pasting

T
o copy a selected group of vertices, press C

trl-C
, T

his w
ill place all

selected vertices and interconnecting edges onto the clipboard. T
o paste

the group of vertices and edges, scroll to the desired area and press C
trl-

V
. U

pon doing so, the original group of vertices w
ill becom

e deselected,
and the new

ly placed group w
ill be selected.

4.8 A
dding an edge

T
o connect an edge from

 one vertex to another, click the black border of
the from

-vertext. W
hile holding dow

n the m
ouse-button, drag the edge to

the to-vertex. R
elease the m

ouse-button and a new
 vertex w

ith an em
pty

label w
ill be created. It is possible to add m

ultiple edges betw
een tw

o
vertices, and to add edges from

 and to the sam
e vertex.

4.9 D
eletIng an edge

T
o delete an edge, first click the appropriate edge on either the arrow

head, the arrow
 tall, or any of the tw

o circles at the center. T
he edge Is

now
 colored red show

ing that it Is selected. T
o delete the selected edge,

click the D
elete key.

114
115

4.10 M
oving an edge

5 T
he O

utO
fB

rain V
irtual M

achine (O
O

B
V

M
)

T
o change the edge's from

-vertex to another vertex, click and drag the
circle on the edge that Is closest to the from

-vertex. D
rag the edge to the

new
 from

-vertex and release the m
ouse-button. C

hanging the to-vertex is
analogues to changing the from

-vertex.

4.11 N
am

ing an edge

E
ach edge has a label. T

o assign or change the labe-text, click the label
w

ith the m
ouse. A

 blinking caret w
ill display, allow

ing text to be entered
w

ith the keyboard. O
nce edited, press the E

nter key to save the entered
text. A

lternatively, click the m
ouse outside the label to save the text. T

o
cancel the editing, press the E

scape button to restore the original label
value. W

hen the caret show
s, C

trl-C
 w

ill copy the text onto the clipboard.
C

tri-C
 w

ill replace the label-text w
ith that on the clipboard.

4.12 N
avigatIng across edges

W
hen the from

-vertex and the to-vertex of an edge is placed far aw
ay

from
 each other in such a w

ay that both do not fit w
ithin the w

indow
, then

it can be difficult to follow
 the edge from

 one vertex to the other vertex.
In such a case, click the arrow

-head or arrow
-tall to m

ove the w
indow

over to the other vertex.

T
he O

utO
fB

raln V
irtual M

achine (O
O

B
V

M
) is a background process w

hich
Interprets and executes the graph. T

here are a num
ber of graph-

structures that are recognized by the O
O

B
V

M
. T

hese structures form
 the

"gram
m

ar" or the "instruction-set" of O
O

B
V

M
. P

rogram
m

ing In O
utO

fB
rain

is therefore com
pletely graph-oriented. T

he graph structures w
hich are

part of the Instructions are collectively defined as the "instructions graph".
T

he graph structures w
hich are not part of the instructions are collectively

defined as the "application graph". T
he Instructions graph and the

application graph both reside In the sam
e graph. E

dges w
hich connect

betw
een Instruction and application are called "interface edges".

M
ost label-texts used In the Instruction set are enclosed by "<

" and">
"

characters (e.g. "<
process>

"). T
hese label-texts are recognIsed by the

O
O

B
V

M
, so these are to be treated as reserved w

ords. T
he program

m
er

should therefore avoid using label-texts in the application graph that have
either the"<

" or the ">
" characters. T

his chapter w
ill describe the basic

gram
m

ar of O
utO

fB
rain.

5.1 <
group>

T
he group structure Is frequently used in O

utO
fB

rain. It Is essentiaiiy an
isolation of a sub-graph. T

he group structure Is m
ostly used as part of an

Instruction. A
 group is represented as a vertex labeled "<

group>
", havIng

from
-edges labeled "<

group>
" pointing to a num

ber of vertices. T
hese

vertices are "m
em

bers" of the group. S
ee an exam

ple of a group structure
in figure 5.1.

116
17

F
Igure 5.1 T

he <
group>

 structure

.

A
ll edges

that exIst betw
een any of the group vertices are also considered

m
em

bers of the group. It is Im
portant to note that the m

em
bers of any

group are part of O
utO

fB
raln's "Instruction graph". G

roup structures are
used a lot In O

utO
fB

raln, and they can be cum
bersom

e to construct
m

anually. T
he O

O
B

D
 supports a keyboard shortcut ror constructing a

group structure.)ust select all vertices w
hich are to be m

em
bers of the

group and press C
trl-G

.

5.2 <
process>

A
ny vertex labeled "<

process>
" (unless It is a m

em
ber of a <

group>
)

represents a running process. M
any processes can be added to an

O
utO

fB
rain application. T

he m
ain loop running in O

O
B

V
M

 continuously
searches for vertices w

hich are labeled "<
process>

". F
or each <

process>
,

the O
O

B
V

M
 determ

ines w
hether It has a leaving-edge labeled "<

run>
". If

such a connection exists, the corresponding to-vertex is "executed" as an
instruction. A

fter execution executed, the result of the instruction
perform

ed determ
ines w

here the <
run>

 connection should be m
oved to.

A
ll instructions have a result. F

or exam
ple, if the result of the Instruction

is "<
true>

", then the <
run>

 connection Is m
oved to the next Instruction

pointed at by "<
true>

". If the Instruction is not recognised by the O
O

B
V

M
,

then the (default) result Is "<
next>

". T
his is show

n as an exam
ple in

figure 5.2. If there Is no edge found that corresponds to the result of te
Instruction, then the O

O
B

V
M

 determ
ines w

hether there Is an edge labeled
"<

next>
". If this Is the case, then this edge is follow

ed instead.

If a <
process>

 vertex does not have an edge labeled "<
run>

", O
O

B
V

M
determ

ines w
hether there Is an edge labeled "<

begin>
". If such an edge

exists, an edge labeled "<
run>

" is created w
ith the sam

e from
-vertex and

to-vertex as the "<
begin>

" edge. O
O

B
V

M
 then processes the "<

run>
"

edge as previously described.
If the <

process>
 does not have an edge labeled either "<

begin>
" or

"<
run>

", then the process is "term
inated" or "Idle".

If there is no from
-edge that m

atches the result of an Instruction, then the
<

run>
 edge Is m

oved back to the <
begln>

's to-vertex. If there Is no
<

begin>
 edge, then the <

run>
 edge is destroyed and the process goes

idle.
A

 process w
ith a from

-edge labeled "<
begin>

" is therefore a continuous
running loop.

5.3 <
branch>

T
he <

branch>
 structure is sim

ilar to a "program
 block" In 'norm

al'
program

m
ing. It has a leaving-edge labeled "<

begin>
" pointing to the

<
branch>

's first instruction to be executed. Initially an edge labeled
"<

run>
" Is created w

ith the sam
e from

-vertex and to-vertex as the
"<

begin>
" edge. T

he instruction pointed to by the <
run>

 edge is
executed, and the <

run>
 edge Is m

oved to the next instruction
accordingly. T

he <
branch>

 therefore acts as a <
process>

, except that it
only runs a "single loop" w

hen activated by a <
process>

. D
uring

execution of the <
branch>

 structure, the <
process>

 keeps its <
run>

edge pointing to the <
branch>

 vertex. O
nce the <

branch>
's <

run>
 edge

loops back to its <
begin>

 Instruction, then the <
process>

 advances its
ow

n <
run>

 edge to the next instruction pointed at by the edge labeled
"<

next>
". T

he result of a <
branch>

 is therefore alw
ays "<

next>
".

118
119

F
igure 5.2 T

he <
process>

 structure executing en Instruction

5.4 <
execute>

A
n <

execute>
 Instruction Is a reference to another

instruction, T
he actual

instruction to be executed Is the to-vertex of the
<

execute>
's from

-edge
labeled "<

run>
. T

he <
execute>

 Instruction inherits
the result of the

actual instruction being executed.

5.5 <
debugpau,e>

 and <
debug_step>

A
ny vertex labeled '<

debug_pause>
" (unless It Is part ofa

<
group>

) w
ill

cause the O
O

B
V

M
 to pause. A

ll <
process>

 structures w
ill halt

execution
until there is no vertex labeled "<

debug_pause>
". A

vertex labeled
"<

debug_step>
" has the sam

e effect, except that the
program

m
er can

use the F
8 key In O

O
B

D
 to "step" the processes. U

pon each
press of the

F
8 key, all processes execute Just one instruction (or branched

Instruction).

5.6 <
im

plicatIon>

T
he <

im
plication>

 Is the m
ost-used Instruction in O

utO
fB

raln,
It Is

com
parable to a slngle-pushout "rew

rite rule" In graph rew
riting.

It has a
"left side" called "prem

Ise" and a "right side" called "conclusion".
W

hen an
<

Im
plication>

 Is executed, the O
O

B
V

M
 searches the applIcation

graph for
patterns that m

atch the prem
ise. T

he pattern that Is found is called
the

"redex". T
he labels of the edges and vertices of the redex

m
ust m

atch the
labels of the edges and vertices of the prem

ise
group. labels of prem

ise
vertices and prem

ise edges that are em
pty are treated

as "w
ild-cards".

W
hen a redex is found, the redex is m

anipulated to
com

plete the pattern
represented in the conclusion. T

he <
im

plication>
can be thought of as a

"search and replace" function. O
n another level of abstraction

it can be
thought of as an instance of causality.
T

he <
im

plication>
's left and right side are represented

as <
group>

structures. T
he <

im
plication>

 has a from
-edge labeled "<

prem
ise>

",
and

a from
-edge labeled "<

conclusion>
", respectively. E

ach edge points
to a

<
group>

 structure.
T

he vertices that are part of the prem
ise group

are called "prem
ise

vertices", and vertices that are part of the conclusion
group are called

"conclusion vertices". P
rem

ise vertices m
ay have from

-edges
labeled

"<
transition>

" that connect to conclusion vertices. T
hese

edges indicate
how

 the prem
ise vertices m

ap to the conclusion vertices.
W

hen an <
im

plication>
 instruction is executed, the O

O
B

V
M

searches the
application graph for sub-graphs that m

atch the prem
ise

graph, w
ith the

additional condition that the redex m
ust not resem

ble the
conclusion, in

other w
ords, "find an instance of the prem

ise w
hich Is

not yet like the
conclusion". If such a redex is found, then the Im

plication is
said to be in

the "before-state". E
lse, if a redex w

as found that m
atched

the conclusion
but not the prem

ise, then the im
plication is In the "after-state". If

a redex
w

as found that m
atched both the prem

ise and the conclusion, then the
im

plication Is in the "both-state". If a redex could neither
be found for the

prem
ise or the conclusion, then the im

plication is In the "neither-state",
T

he before situation has therefore the highest priority
in O

O
B

V
M

's search
algorithm

. If m
ultiple redexes are found, then

one is chosen at 'random
'.

If the Im
plication Is in the before-state, then the O

O
B

V
M

m
anipulates the

redex so that it m
atches the conclusion. T

his phaze
is called the "im

ply-
state". T

hese m
anipulations m

ay Include creating
vertices, labeling

vertices, destroying vertices, creating edges, m
oving edges,

labeling
edges and destroying edges. A

fter applying these
changes, the im

plication
goes Into the "im

plied-state".

T
he result of the <

Im
plication>

 Is "<
im

plied>
" for

the Im
plied-state,

"<
after>

" for the after-state, "<
both>

" for the
both-state, and

"<
neither>

" for the neither-state. T
he result tells the

<
process>

 w
hich

path to follow
 to determ

ine the next instruction to
execute. O

ptionally, an
edge labeled "<

result>
" can be connected from

 the <
im

plication>
to

120
121

F
igure 5.3 T

he <
Im

plicatIon>
 S

tructure

another vertex. T
he result of the im

plication w
ill be stored in the vertex's

label after execution. T
his is useful during debugging.

In the exam
ple show

n in figure 5.3, the im
plication in a before-state

w
ould alter the found redex by deleting the vertex labeled "B

", delete the
edge labeled "1", add a vertex labeled "D

", add an edge labeled "4"
betw

een vertices "A
 and "D

", and add an edge labeled "3" betw
een

vertices "C
" and "D

". Im
portant to note is that the labels of the vertices

and edges in the redex m
ust m

atch those in the prem
ise part. If a label in

the prem
ise part is en em

pty string, then this is treated as a 'w
ild-card'.

In such a case, the corresponding redex vertex or edge m
ay have any

label.
Im

plication structures are used a lot in O
utO

fB
rain, and they can be

cum
bersom

e to construct m
anually. T

he O
O

B
D

 supports a keyboard
shortcut for constructing an im

plication structure. Just construct a prem
ise

situation, select all the vertices and press C
trl-I. A

nd finally, alter the
<

conclusion>
 structure to achieve the desired rew

rite rule.

5.7 <
condItion>

-

T
he <

condition>
 Instruction Is very sim

ilar to the <
Im

plication>
instruction.
E

xcept for the instruction's label, the rem
aining structure is identical to

that of
an <

im
plication>

 structure. H
ow

ever, w
hen a <

condition>
 instruction is

executed, it does not apply the rew
rite rule w

hen it results in the before-
state.
Instead, it rem

ains in the before-state and returns "<
before>

" as a result.
T

he
<

condition>
 instruction is therefore purely conditional.

T
he <

conclusion>
 group of a <

condition>
 structure is optional. If the

conclusion group is om
m

ited, then the O
O

B
V

M
 sim

ply determ
ines w

hether
a redex can be found that m

atches the prem
Ise group. If so, then the

result is "<
true>

". E
lse the result is "<

false>
". A

 <
condition>

 structure
that has both a <

prem
ise>

 and a <
conclusion>

 group is called a "double
condition". A

 <
condition>

 structure that has just a <
prem

ise>
 group is

called a "single condition".

5.8 <
w

aIt>

T
he <

w
ait>

 Instruction is very sim
ilar to the <

condition>
 instruction.

E
xcept for the instruction's label, the rem

aining structure is identical to
that of
a <

condition>
 structure. H

ow
ever, w

hen a <
w

ait>
 Instruction Is

executed, the <
run>

 edge is not m
oved on to the next instruction until

the condition returns either <
after>

 or <
both>

. T
he result of the <

w
ait>

Instruction is then <
next>

.

122
123

,...

F
igure 5.4 T

he <
condition>

 structure

5.9 <
candidate>

 edges

W
hen the O

O
B

V
M

 searches the application graph for patterns that m
atch

the
prem

ise part of either an <
Im

plication>
 or a <

condusion>
, It does so in

the
entire application graph and m

ay find m
ultipie redexes. In som

e cases w
e

w
ant

to im
plicitly tell the O

O
B

V
M

 that a particular prem
ise vertex corresponds

w
ith a

particular application graph vertex. T
o do so, connect an edge from

 the
prem

ise vertex to the application graph vertex and label it "<
candidate>

".
T

his
forces the O

O
B

V
M

 to use this "candidate vertex" in the redex, If such a
redex exists. S

ee figure 5.5 for an exam
ple.

F
igure 5.5 T

he <
candidate>

edge

M
ultiple <

candidate>
 edges can be added. If a single prem

ise vertex has
m

ultiple candidates, then the O
O

B
V

M
 searches for a redex w

here at
least one of these candidates produce a m

atch.

5.10 <
reference>

 and <
m

atch>
 edges

W
hen the O

O
B

V
M

 finds a redex for either an <
im

plication>
 instruction or

a <
conditIon>

 instruction, then w
e m

ight w
ant to reference (parts of) this

redex In a later instruction. T
his is especially the case w

here m
ultiple

redexes m
ay be present in the application graph, and w

e w
ant to focus on

a particular redex for successive instructions. A
 <

candidate>
 edge w

ill
not suffice here because w

e do not know
 beforehand w

hich redex is
selected. F

or such purposes the O
O

B
V

M
 supports the use of edges labeled

"<
reference>

". T
he <

reference>
 edge Is very sim

ilar to the <
candidate>

edge, except that the <
reference>

 edge points to a prem
ise vertex of

another instruction. C
onsider an Instruction A

 that is follow
ed by an

instruction B
. F

urther assum
e that there exists an edge labeled

"<
reference>

" that points from
 a prem

ise vertex P
B

 in Instruction B
 to a

prem
ise vertex P

A
 in instruction A

. W
hen the O

O
B

V
M

 executes instruction
A

 and finds a redex, an edge labeled "<
m

atch>
" Is created betw

een
vertex P

B
 and Its corresponding redex vertex R

A
. W

hen Instruction B
 is

executed, then vertex R
A

 functions as a candidate for finding P
B

.

F
igure 5.6 T

he <
reference>

edge and <
m

atch>
 edge

Figure
5.6 illustrates the use of the <

reference>
 edge. T

he first instruction
finds one of m

ultiple possible redexes. T
he O

O
B

V
M

 detects the presence
of a <

reference>
 edge and creates a <

m
atch>

 edge to indicate the
corresponding redex vertex. T

he second Instruction then uses this redex
vertex as the candidate.

II
•. <

ciddM
t>

124
125

I

5.11 C
onditIonal operator.

T
he O

O
6V

M
 supports additional conditional operators that can be attached

to the prem
ise groups of instructions. T

hese operators are used by the
O

O
B

V
M

 w
hen w

hen it searches for a redex. A
 redex m

ust m
eet the

conditions specified by these operators. T
here are five different conditional

operators, show
n In table 5.1.

conditional operator
description

=
I

equals
>

I
greater than

<
I

lessthan
>

=
I

greater than or equal to
<

I
less than or equal to

T
able 5.1 T

he conditional operators

T
o illustrate the use of a conditional operator, consider an instruction A

w
ith a prem

ise group P
 w

here vertex P
A

 is one of the prem
ise vertices of

P
. A

n edge labeled "=
Is connected from

 vertex P
A

 to another vertex V
that Is not a m

em
ber of P

. V
ertex P

A
 has an em

pty label and V
 is labeled

"5. T
he edge labeled "—

 is a conditional operator. T
his conditional

operator tells O
O

B
V

M
 that the redex vertex of P

A
 m

ust be labeled "5'. F
or

an edge to be Interpreted as a conditional operator, the follow
ing

conditions m
ust be m

et:

1. T
he edge m

ust be labeled either "",">
", "<

", ">
" or "<

=
".

2. T
he edge m

ust be directed from
 a prem

ise vertex that has an em
pty

label.
3. T

he edge m
ust be directed to a vertex outside the prem

ise group.

T
he conditional operator points to a vertex w

hose label represents the
conditional value. T

he label is interpreted either as a num
ber, as a string

or as em
pty. If the label is interpretable as a num

ber, then the operator is
applied as a num

eric condition. If the label is not a num
ber and is not

em
pty, then the label is interpreted as a string and the operator Is applied

as a string condition. F
or num

eric conditions the operators are self-
explanatory. T

he com
pare operation for stflng conditions is based on the

8-bit ordinal value of each character.
If the label is em

pty then the conditional value is a calculated value.
C

alculated values are determ
ined by the value operators. T

here are five
different value operators, show

n in table 5.2

value operator
I

description

I
is equal to

+
I

add
-

I
subtract

•
I

m
ultiply

I
I

divide

T
able 5.2 T

he value operators

A
 value operator Is an edge that is labeled w

ith one of the value operators
listed in table 5.2. T

he edge can either point to a vertex w
ithin the

prem
ise group, or to another vertex outside the prem

ise group.

F
igure 5.7 C

onditional operators and value operators.

F
igure 5.7 illustrates the use of conditional operators and value operators.

T
he edge labeled ">

" tells the O
O

B
V

M
 that the label of the redex vertex

m
ust num

erically be Interpretable as greater than zero. T
he edge labeled

=
" indicates that "the area m

ust equal (length " length)". M
ultiple value

operators can be used to determ
ine a conditional value. T

he follow
ing

form
ula is applied w

hen m
ultiple value operators are used:

conditional value =
 (((sum

("+
") - (sum

("-")) * (product('*))) /
product("/")

126
127

.' <
ro*>

.

If any of the operator-types are not present, then they are elim
inated

from
 this expression. In general, value operators are O

nly used for
num

eric calculations, and not applIed as stflng operators.

5.12 A
ssIgnm

ent O
perators

A
signm

ent operators are very sim
ilar to conditional operators. C

onditional
operators are attached to prem

ise vertices, but assignm
ent operators are

attached to condusion vertices. T
he assigm

ent operators are only used in
conjunction w

ith <
im

plication>
 instructIons. T

he assignm
ent values are

used to assign values to the labels of redex vertices w
hen an

<
im

plication>
 Instruction reaches the im

ply-state. T
here are five different

assignm
ent operators, show

n in table 5.3.

assigm
ent operator

description

I
setto

I
set greater than

I
set less than

I
set greater than or equal to

I
set less than or equal to

T
able 5.3 T

he asslgm
ent operators.

T
o illustrate the use of an assignm

ent operator, consider an <
im

plication>
instruction A

 w
ith a conclusion group C

 w
here vertex C

A
 is one of the

conclusion vertices of C
. A

n edge labeled " is connected from
 vertex C

A
to another vertex V

 that is not a m
em

ber of C
. V

ertex C
A

 has an em
pty

label and V
 is labeled "5". T

he edge labeled "=
" Is an assignm

ent
operator. T

his assignm
ent operator instructs O

O
B

V
M

 to set the label of the
redex vertex that corresponds to C

A
 to "5" during the im

piy-state of A
.

F
or an edge to be interpreted as an assignm

ent operator, the follow
ing

conditions m
ust be m

et:

1. T
he edge m

ust be labeled either "=
", ">

", "<
", ">

=
" or "<

=
".

2. T
he edge m

ust be directed from
 a conclusion vertex that has an em

pty
label.

3. T
he edge m

ust be directed to a vertex outside the conlcusion group.

T
he assignm

ent operator points to a vertex w
hose label represents the

assignm
ent value. T

he label is interpreted either as a num
ber, as a string

or as em
pty. If the labei is interpretable as a num

ber, then the operator Is
applied as a num

eric assignm
ent. If the label Is not a num

ber and is not
em

pty, then the label Is interpreted as a string and the operator is applied
as a string assignm

ent. F
or num

eric assignm
ents, the assignm

ent value is

set in such a w
ay that the assignm

ent operator w
ould pass as a

conditional operator. F
or exam

ple, w
hen a redex vertex is labeled "4", but

by m
eans of assignm

ent operators is required to be '>
—

 5', then the label
of the redex is set to 5. B

ut if in this case the redex w
ere labeled "6", then

the label w
ould rem

ain "6". F
or string assignm

ents only the "=
" operator

is supported.
If the label is em

pty then the assignm
ent value is a calculated value.

T
hese calculated values are determ

ined in the sam
e w

ay as the calculated
values are calculated for conditional operators, w

hich is explained in the
previous chapter.

F
igure 5.8 show

s an exam
pie of an assignm

ent operator. T
he assignm

ent
operator is the edge labeled "=

'. W
hen the im

plication instruction reaches
the im

ply-state, a new
 vertex is created and a new

 edge is created. T
he

new
ly created vertex is labeled w

ith the assignm
ent value. T

he
assignm

ent value in this case is the "square of the length".

128
129

>>
.c'4! °.grc

F
igure 5.8 T

he assignm
ent operator.

6 O
utO

fB
rain A

gents
A

n <
agent>

 is connected by edges to several <
group>

 structures. T
he

labels of these edges tell the agent w
hat types of <

group>
 structures they

O
utO

fB
rain has built-in functionality for sim

ulating autonom
ous agents

represent.
and m

ultI-agent system
s. T

he type of agents that are m
odelled in

O
utO

fB
rain m

ay not com
ply w

ith the standard types of agents, and do not
fit m

any of the very m
any different definitions of an agent. Instead, the

agents in O
utO

tB
rain are "graph-rew

riting agents". T
hese agents are run

by the "A
gent M

anager" (A
M

) w
hich is em

bedded w
ithin the O

O
B

V
M

,

6.1 T
he A

gent M
anager

T
he A

gent M
anager (A

M
) is run w

ithin the O
O

B
V

M
. T

he A
M

 is activated
w

hen a <
process>

 runs a vertex that Is labeled "<
agent>

". T
he <

agent>
is parsed and executed by the A

M
. E

ach agent has a set of connected
<

im
plication>

 and <
condition>

 structures w
hich are loaded into the A

M
.

T
hese im

plications and conditions are called "branch-im
plications" and

"evaluator-conditions", respectively.
.

.

T
he m

ain com
ponent of the A

M
 is the "V

irtual C
ontext G

enerator" (V
C

G
).

T
he V

C
G

 basically builds m
any copies of the entire graph and perform

s
F

igure 6.1 T
he <

agent>
 structure.

operations on each. E
ach of these graphs is called a "virtual context",

w
hich one can interpret as a "possible w

orld". W
hen an agent is run, the

A
M

 determ
ines all the possible results of executing each branch-

T
he m

eaning of these different types of groups is explained in further
im

plication. T
here m

ay be m
any different outcom

es because every
detail in the follow

ing chapters.
im

plication m
ay find m

ore than one redex. E
ach result is stored as a

virtual context. T
his process is repeated for each virtual context

recursively, resulting in a tree of virtual contexts constructed in breadth-
first fashion. T

his tree is called the "V
irtual C

ontext T
ree" (V

C
T

). F
or every

virtual context, the set of evaluator-conditions are evaluated. T
he results

of these conditions tell the A
M

 how
 "desirable" the virtual context, how

"possible" the virtual context is, and w
hether the virtual context is

perm
itted. S

om
e branches m

ay term
inate, either because no branch-

im
plications can be applied, or because a branch-im

plication m
ay result In

a virtual-context w
hich Is not perm

itted. W
hen all virtual contexts are

determ
ined, or after a set tim

e period, the A
M

 determ
ines the m

ost
desirable virtual context and records the sequence of branch-im

plications
that w

ere necessary to reach that virtual context. T
his sequence is called

the "inference", and form
s the "plan" of the <

agent>
. T

he inference is
then stored as a sequence of instructions that are connected to <

agent>
vertex. T

he <
process>

 structure can then execute this inference w
ith the

intention to transform
 the graph to m

atch the desirable virtual context.

30
131

6.2 <
voluntarlea>

6.3 <
Involuntarles>

T
he <

voluntaries>
-group contains a set of <

im
plication>

 structures. T
he

A
M

 uses these to generate new
 virtual-contexts in the V

C
T

,
and

are
classified as branch-im

plications. A
 voluntary Im

plication is executed in a
virtual context, and the resulting graph is stored In a new

 virtual-context.
If the im

plication cannot be applied, then the voluntary im
plication Is

ignored. T
he voluntary im

plications represent the actions the agent m
ay

or m
ay not do in a given situation.

(-'I

T
he <

involuntaries>
-group contains a set of <

im
plication>

 structures. T
he

A
M

 uses these to generate new
 virtual-contexts, and are classified as

branch-im
plications. A

n involuntary im
plication is executed in a virtual

context, and the resulting graph is stored in a new
 virtual-context. If the

Im
piication cannot be applied, then the involuntary im

plication Is ignored.
T

he involuntary im
plications represent the agents reflex actions that m

ust
be perform

ed in a given situation.

0 ot <
'.

Q
—

I w
I_I

F
igure 6.2 A

n <
agent>

 structure show
ing <

voluntaries>
.

• 7' LW
'

w
I

Q
—

IQ
—

I

F
igure 6.3 A

n <
agent>

 structure show
ing <

involuntaries>
.

132
133

6.4 <
C

onstraints>
6.5 <

consistencies>

T
he <

constraints>
-group contains a set of <

condition>
 structures. T

he A
M

uses these to determ
ine w

hether a virtual context is perm
itted, and are

classified as evaluation-conditions. T
he <

condition>
 m

ay either be a
single condition or a double condition. If the constraint condition results in
either <

true>
 or <

before>
, then the virtual context Is not perm

itted, and
Is rem

oved from
 the V

C
T

.

<
,

lF
Igure 6.4 A

n <
agent>

 structure show
ing <

constraints>
.

T
he <

conslstencies>
-group contains a set of <

condition>
 structures, T

he
A

M
 uses these to determ

ine w
hether a virtual context Is consistent, and

are therefore classified as evaluation-conditions. T
he <

condition>
 m

ay
either be a single condition or a double condition. F

or a virtual context to
be consistent, all consistencies conditions m

ust either be <
true>

 or
<

before>
. If not, then the virtual context is rem

oved from
 the V

C
T

.

<
4'

I

I Q
Q

i
F

igure 6.5 A
n <

agent>
 structure show

ing <
consistencies>

.

134
135

6.6 <
predIctions>

6.7 '<
preferences>

T
he <

predictions>
-group contains a set of <

Im
plication>

 structures. T
he

A
M

 uses these to generate new
 virtual-contexts, and are classified as

branch-Im
plications. A

 prediction Im
plication is executed In a virtual

context, and the resulting graph is stored In a new
 virtual-context. II' the

im
plication cannot be applied, then the prediction im

plication is Ignored.
T

he prediction Im
plications represent the agent's know

ledge of how
 the

extem
al w

orld
w

ill change In a given situation. A
lthough prediction

Im
plications are branch-im

plications, they are converted to <
w

ait>
structures w

hen used a part of an agent's Inference.

<
w

ibI

'w
°w

 e°'e' •

T
he <

preferences>
-group contains a set of <

condition>
 structures. T

he
A

M
 uses these to determ

ine how
 desirable a virtual context is, and are

classIfied as evaluation-conditions. T
here are three different types of

preference conditions, nam
ely <

boolean>
, ccount>

" and
"<

obllgation>
. T

he type Is stored In a vertex's label that Is connected
from

 the <
condition>

 vertex w
ith an edge labeled <

type>
". W

hen the
<

type>
 property Is not present, then the type defaults to <

boolean>
. F

or
boolean-preferences and obligation-preferences, the <

condition>
 m

ay
either be a single condition or a double condition. F

or count-preferences,
the <

condition>
 m

ust be a single condition.

T
he A

M
 uses the <

preferences>
 (together w

ith <
dislikes>

) to rank the
virtual contexts according to preference. F

or boolean-preferences, a
virtual context has a high ranking If m

any conditions are either <
true>

 or
<

after>
. F

or count-preferences, a virtual context has a high ranking if
m

any occurences of <
true>

 situations (redexes) can be found. If
obligation-preferences are present, then a virtual context Is om

itted from
the ranking altogether if the condition result Is either <

before>
, <

both>
or <

false>
. A

n agent's m
ust achieve the obligations In any resulting

Inference.

•°
V

'(9C
*D

'

136
137

Q
_i

F
igure 6.6 A

n <
agent>

 structure show
ing <

predictions>
.

l ll
F

igure 6.7 A
n <

agent>
 structure show

ing <
preferences>

.

6.8 <
dislIkes>

T
he <

dlsllkes>
-group contains a set of <

condition>
 structures. T

he A
M

uses these to determ
ine how

 undesirable a virtual context is, and are
classified as evaluation-conditions. T

he <
dislikes>

 operate in the sam
e

w
ay as <

preferences>
, except that <

dislikes>
 m

ake a virtual context
have a low

 ranking. T
here are tw

o different types of dislike conditions,
nam

ely "<
boolean>

" and "<
count>

". T
he type Is stored In a vertex's label

that Is connected from
 the <

condition>
 vertex w

ith an edge labeled
"<

type>
". W

hen the <
type>

 property Is not present, then the type
defaults to <

boolean>
. F

or boolean-dislikes, the <
condition>

 m
ay either

be a single condItion or a double condition. F
or count-dislikes, the

<
condition>

 m
ust be a single condition.

T
he A

M
 uses the <

dislikes>
 (together w

ith <
preferences>

) to rank the
virtual contexts according to preference. F

or boolean-dislike, a virtual
context has a low

 ranking if m
any conditions are either <

true>
 or

<
before>

. F
or count-preferences, a virtual context has a low

 ranking if
m

any occurences of <
true>

 situations (redexes) can be found.

A
s an alternative to w

orking w
ith preferences and dislikes, a single goal is

also supported. T
he single goal Is represented as a <

prem
ise>

 and
<

conclusion>
 structure, that is connected directly to the <

agent>
 vertex.

T
he structure Is therefore sim

ilar to a <
condition>

 or <
im

plication>
structure, but Is called the "goal-condition". W

hen a single-goal-agent is
run, It w

ill first determ
ine the value of the goal-condition. If the result is

<
before>

, then the V
C

G
 is requested to build a V

C
T

. T
he process w

ill stop
once an <

after>
-situation Is found am

ongst one of the virtual contexts.
T

he corresponding inference is then stored. T
he <

before>
 situation Is

therefore the condition of the agent, and the <
after>

 situation Is the goal
of the agent. T

he single-goal-agent can be used as a sim
ple problem

solver.

F
igure 6.8 T

he single-goal-agent.

6.10 T
he agent types

T
here are tw

o types of agents, nam
ely "<

active>
", and "<

solve>
". T

he
type Is stored In a vertex's label that Is connected from

 the <
agent>

vertex w
ith an edge labeled "<

type>
". A

n active-agent w
ill calculate and

execute an Inference. A
 solve-agent calculates an inference, but does not

execute It. T
he result of an active-agent is "<

achieved>
" if the inference

could be calculated and If the inference executed successfully. In all other
cases the result Is "<

failed>
". T

he result of a solve-agent is "<
achieved>

"
if the Inference could be calculated. In all other cases the result is
"<

failed>
". A

 single-goal-agent has additional results "<
both>

" and
"<

neither>
". T

hese values are returned in the cases w
here the goal-

conditIon results In "<
both>

" or "<
neither>

", respectively, because In
these cases no attem

pt Is m
ade In calculating the inference. If the goal-

condition Is <
after>

, then no Inference Is calculated and the agent's result
is sim

ply <
achieved>

.

F
igure 6.9 A

n active-agent and a solve-agent.

138
139

6.9 T
he single-goal-agent

(I
>

6.11 A
n exam

ple of an agent

T
o illustrate the use of an <

agent>
, an exam

ple is show
n in the form

 of a
sim

ple problem
 solver. T

he puzzle Is a w
ell-know

n puzzle that is described
as

follow
s:

A
 farm

er finds him
self on one side (left side) of a river w

ith a chicken, a
fox, som

e grain and a boat. T
he farm

er m
ust take all these item

s to the
other side (right side) of the river using the boat. T

he rules state,
how

ever, that the farm
er m

ay only take zero or one item
 In the boat.

F
urtherm

ore, the fox and the chicken m
ust not be left unattended, and

neither should the chicken and the grain. W
hat is the m

inim
um

 order of
actions that the farm

er m
ust perform

 to m
ove him

self and a/i the item
s to

the right hand side?

W
e can quite easily solve this puzzle ourselves. T

here are tw
o possible

solutions:

S
olution 1

1. F
arm

er takes chicken to right side.
2. F

arm
er travels to left side.

3. F
arm

er takes fox to right side.
4. F

arm
er takes chicken to left side.

5. F
arm

er takes grain to right side.
6. F

arm
er travels to left side.

7. F
arm

er takes chicken to right side.

S
olution 2

1. F
arm

er takes chicken to right side.
2. F

arm
er travels to left side.

3. F
arm

er takes grain to right side,
4. F

arm
er takes chicken to left side.

5. F
arm

er takes fox to right side.
6. F

arm
er travels to left side.

7. F
arm

er takes chicken to right side.

T
o solve the problem

 in O
utO

fB
raln, w

e start by m
aking a m

odel of the
situation in the form

 of a graph. H
ere w

e describe the concepts of the
puzzle that are relevant to the problem

 proposed. T
his w

ill be our
application graph (as opposed to the instruction graph).

F
igure 6.10 T

he appllgation graph.

T
he application graph show

s a sim
plified view

 of the first tw
o sentences of

the puzzle. N
otice that the graph couid have been nam

ed and structured
differently, and still provide a good graph to w

ork w
ith. A

 "good graph" Is
loosely defined by tw

o criteria:

1. "A
 graph that describes the essence of the static situation in its

sim
plest form

".
2. "A

 graph w
here relevant changes In the situation can be described in

term
s of sim

ple graph operations".

A
 m

ore form
al definition of a "good graph" Is difficult to determ

ine
because the tw

o criteria show
 a trade-off relationship. N

otice that w
e

chose not to represent the "boat" In the graph, as It is not relevant to the
essence of the puzzle. T

he boat Is alw
ays w

ith the farm
er, so w

e do not
need to represent the boat. S

im
ilarly, w

e do not have to represent the
river. T

he puzzle is sim
ply about a farm

er, three distinct item
s and tw

o
distinct sides. It Is easy to see w

hy w
e need the "at" edges, because w

e
need to be able to describe w

here the farm
er and the Item

s are. B
ut one

could argue that w
e could have left out the tw

o "otherside" edges,
because w

e can still describe the situation w
ithout them

. T
he tw

o
"otherside" edges are there to m

eet the dem
ands of the second criterium

,
for reasons that w

ill becom
e apparent later on. C

onstructing a good graph
is usually an iterative process, tw

eaking the application graph during the
design of the instruction graph. M

aking a good graph straight from
 the

start requires practice w
ith the type of graph rew

riting used In O
utO

fB
raln.

T
he criteria for a good graph can be further extended w

ith m
ore

requirem
ents, such as "flexibility" and "re-usability", but these topics are

beyond the scope of this text.

T
he next step is to create the instruction graph. T

he follow
ing paragraphs

w
ill describe each com

ponent of the Instruction graph. F
igure 6.11 show

s
a zoom

ed out view
 of the w

hole graph.

140
141

44
F

igure 6.11 O
vervIew

 of the puzzle
and

the agent.

In the zoom
ed out graph the application graph can be seen in the top left

corner. T
he m

ain <
agent>

 structure is show
n directly below

 the
application graph, show

n in figure 6.12. T
he agent is a solve-agent, as

show
n w

ith the <
type>

 edge. T
he agent is a single-goal-agent as it has

<
prem

Ise>
 and <

conclusion>
 groups. T

he goal-condition show
s that the

prem
ise m

atches the application graph, and therefore the goal-condition Is
In the <

before>
 state. T

he agent w
ould therefore attem

pt to calculate an
inference If It w

ere executed. N
otice how

 the transition from
 the prem

ise
situation to the conclusion situation corresponds w

ith w
hat the puzzle asks

us to solve.

42
43

÷
0

A

•:j
C

'

,t]
L?i

F
igure 6.12 T

he agent.

T
he puzzle allow

s the farm
er to go to the other side w

ith just one Item
, or

w
ith no Item

 at all. T
hese tw

o possible actions can be described as tw
o

voluntary im
plIcatIons. F

igures 6.13 and 6.14 show
s these voluntary

actions respectively.

F
igU

re 6.13 V
oluntary im

plIcation #1.144
145

A

.-, '_'('

•

•
•,

In
0

tc at
Ire

II

GF
igure 6.14 V

oluntary im
plication #2.

W
e have alm

ost described the w
hole puzzle to the agent. T

he tw
o

rem
aining rules are tw

o constraints, w
hich state that the chicken and fox

should not be left unattended, and neither should the chicken and the
grain. W

e can describe these tw
o constraints as constraint conditions. W

e
need to describe these constraInts as conditions in such a w

ay that the
<

true>
 or <

before>
 sItuation describes the constraint. F

igures 6.15 and
6.16 show

s how
 the before situation describes the absence of the farm

er.

F
igure 6.16 C

onstraint condition #2.

R
epresentation of the entire puzzle is now

 com
plete. T

he agent has
enough inform

ation to calculate an inference. If the agent is executed,
then the agent w

ill try m
any com

binations of the voluntary im
plications to

see w
hich sequence w

ill produce the desired result. W
hen the inference

has been found, the agent w
ill print the sequence of instructions

(Im
plications) that w

ere necessary to achieve the goal. A
nd Inference edge

is connected from
 the <

agent>
 vertex to the first instruction of the

inference. A
s this Is a solve-agent, the Inference Is not executed. T

he
result Is show

n In figure 6.17. T
he instructions are show

n from
 left to

right, next to the <
agent>

 vertex. A
lthough not all visible, there are

seven Im
plications that describe the actions m

ade by the farm
er, w

hich
directly corresponds w

ith one of the seven-step answ
ers provided in

solution 1 and solution 2. In fact, the agent is capable of finding both
solutions, but just one of them

 chosen at random
 for the inference.

0• ->

erflT
—

k>
dick..,

(Ic,,flfl>

F
igure 6.15 C

onstraint condition #1.

146
147

F
igure 6.18 show

s a closer view
 of the first Instruction. It is visible that

this resem
bles the first voluntary im

plication, except that the labels for
"chicken", "left" and "right" are filled In. T

he agent does this ensure that
the correct item

 is chosen.

F
igure 6.18 T

he first
Instructions

of the Inference.

If the agent w
ere an active agent, then the inference w

ould have been
executed, m

oving the farm
er w

ith the item
s to the other side according to

the Instructions in the Inference.

7 T
C

P
 com

m
unication

O
utO

fB
rain supports structures for com

m
unicating via T

C
P

. T
here are tw

o
basic structures for T

C
P

, nam
ely "<

tcpserver>
" and "<

tcpclient>
". T

hey
are not classified as "Instructions" because they do not require a
<

process>
 to execute them

. Instead, the T
C

P
 structures are run directly

by the T
C

P
 m

anager. T
he follow

ing tw
o chapters describe these

instuctions.

T
he .ctcpserver>

 structure is interpreted as a listening T
C

P
 server. M

any
<

tcpserver>
 structures can be created, providing that each server listens

to a different "port". A
 <

tcpserver>
 structure is show

n in figure 7.1. W
hen

the <
status>

 property is set to "<
enabled>

" then a T
C

P
 server is created

that listens to the port num
ber that is set in the <

port>
 property. If the

creation of the server w
as not successful, then the <

status>
 property is

autom
atically set to "<

disabled>
". T

he server can be disabled by setting
the <

status>
 property to "<

disabled>
". T

he <
status>

 property m
ay be

set by im
plications in the instruction graph.

F
igure 7.1 T

he <
tcpserver>

 structure.

W
hen a client connects to a <

tcpserver>
, a <

client>
 structure is

connected as show
n in figure 7.2. T

he <
address>

 property of the <
client>

show
s the client's address. T

he <
status>

 property of the <
client>

 is set to
"<

connected>
" w

hile the connection persists. T
he <

client>
 can be

disconnected by setting the <
status>

 property to "<
disconnected>

".
W

hen a <
client>

 disconnects, the <
client>

 structure Is rem
oved. M

any
clients m

ay connect, and for each connection is <
client>

 structure is
created.

148
149

÷
0

F
igure 6.17 O

vervIew
 of the graph after execution

of
the agent.

7.1 <
tcp..rver>

..
(p

0" <
bto

7.2 <
tcpclient>

T
he <

tcpclient>
 structure is Interpreted as a T

C
P

 client. M
ultiple

<
tcpclient>

 structures can be created. A
 <

tcpserver>
 structure is show

n
In figure 7.2. W

hen the <
status>

 property Is set to "<
connect>

" then a
T

C
P

 client is created that connects to an address that is set in the <
host>

property, w
ith the port num

ber that is set In the <
port>

 property. If the
connection could be establisched successfully, the <

status>
 property Is

set to "<
connected>

", else It is set to "<
disconnected>

". T
he client can be

disconnected by setting the <
status>

 property to "<
disconnected>

". T
he

<
status>

 property m
ay be set by im

plications in the instruction graph.

7.3 S
ending and receiving data

T
he <

tcpserver>
 and <

tcpclient>
 both send and receive data in the sam

e
w

ay. T
o send data from

 a <
tcpdlent>

 to its connected host, first create a
string of vertices that are Interconnected by edges labeled "<

next>
",

directing from
 the start to the end of the string to be sent. In the labels of

each vertex of this string, enter a piece of text. T
he last vertex In the

string should be labeled "<
new

line>
". N

ext, connect an edge from
 the

<
tcpclient>

 to the first vertex of the string and label it "<
send>

". A
t this

m
om

ent, the T
C

P
 m

anager w
ill detect the presence of the <

send>
 edge,

and w
ill determ

ine w
hether a string of verylces Is connected that ends

w
ith a <

new
line>

 vertex. T
hen the string w

ill be rem
oved, and the textual

version is sent to the host. T
he data that is actually sent is a string of

texts, separated by space characters, and ending w
it a #10 byte

character. S
im

ilarly, If a <
send>

 edge is connected from
 a <

tcpserver>
's

<
client>

 vertex to such a string of vertices, then this text is sent to the
corresponding client.

W
hen a <

tcpcllent>
 receives data from

 Its connected host, it collects all
data until a #10 character is read. T

he data is interpreted as text, and is
separated into sm

aller pieces of text w
here w

hitespace is used as a
delim

iter. T
hese pieces of text are then stored into the labels of a string of

vertices. A
n edge labeled '<

received>
" is then connected from

 the
<

tcpcllent>
 vertex to the first vertex of the string. S

im
ilarly, a <

client>
 of

a <
tcpserver>

 receives data in the sam
e w

ay.

T
he easiest w

ay to illustrate this, Is to create a <
tcpserver>

 structure and
a <

tcpclient>
 structure in the sam

e graph, and let the <
tcpclient>

connect to the <
tcpserver>

, as show
n in figure 7.4. T

he figure show
s that

the client has received a string of data. T
he data can be sent back to the

server by renam
ing the "<

received>
" edge to "<

send>
".

50
151

F
igure 7.3 T

he <
tcpclient>

 structure.

F
igure 7.2 A

 <
tcpserver>

 structure w
ith a connected client.

F
Igure 7.4 A

 <
tcpc/ient>

 connected via T
C

P
 to a <

tcpserver>
.

Appendix B: Overview of todo-agent and
user-agent
Below are the overviews of the todo-agent's and the user-agent's implementation. The diary-
agent is provided in Section 5.2.

Figure B. 1: The todo-agent, represented in OutOfBrain-pseudo-code.

<

m

I

IL
rnessge oi me

k&cM re.et afithies (ci (3**JPS

r

Figure B. 2. The user-agent, represented in OutOjl3rain-pseudo-code.

153

I

__ ___

ew_

— IFEc, rm hi*$ I uI

Figure B.5: User-agent branch 3; retrieving the average attribute values for a given subtype.

154

Figure B. 3: User-agent branch 1; selection of the best suggestion from a list provided by the
diary-agent.

ie:t &I wee,

Figure B. 4: User-agent branch 2; retrieval of the distance (travel time in minutes) between
Iwo locations.

•'•: :rrA

155

dc4e d&e ueenw

Figure B. 6: User-agent branch 4; updating the user-energy (also known as average-energy).

Figure B. 7: User-agent branch 5; updating the type-tree.

Appendix C: host graph
The core of the host graph consists of a diary, the do-items and the todo-items. There is also
an abundance of supporting data in the host graph: messages, a user model and some
reference objects. We start with an example of a todo-item and a do-item. Then we provide an
example message and an example user-model.

The representation of items
Figure C. I shows a typical todo-item. The user has to provide this information through the
interface, using buttons, checkboxes and slides'. The task is to write a project proposal, it
takes approximately four hours, the deadline is the fourth of July and the location is the IDEA
building in Groningen. The item is of type work and subtype writing.

The attributes on the left show that we are dealing with an important task that takes
tremendous mental effort, but hardly any physical effort. Furthermore, this user clearly likes
writing his or her project proposals. This item is probably high on the todo-agent's urgency
list, since the deadline is close (given that today is July the second). Furthermore, the task is
fun, important and not physically demanding. The reason that it is probably not the topmost
todo-item on the urgency-list is that it takes four hours and a lot of mental effort to complete.
If this item is chosen to be moved to the diary, the user-agent will try to satisfy as many
preferences as possible (Section 5.4). Travel times between items are to be minimized.
Diversity per day should be maximized, with respect to type, subtype, importance, mental
effort, physical effort and fun. Furthermore, we want the item to be scheduled as soon as
possible and finally, the deadline is taken into account.

As can be seen from Figure C.2, a do-item is almost identical to a todo-item. The difference is
that a do-item must have a start-time and an end-time2 and that it is always connected to a day
in the diary.

'Instead of providing the attributes on the left of Figure C.1 manually, they can be estimated automatically using
statistical analysis of other items with the same type and subtype.
2 Do-items can also have a deadline, although the one in Figure 5.3 does not.

156

Figure C.]: Out OfBrain representation of a typical todo-item.

_

The representation of messages
Below, in Figure C.3, is an example message. The todo-agent has selected the most urgent
todo-item and he now proposes it to the interface. The todo-agent's choice is not evaluated,
instead, the item is directly highlighted on the user-interface.

Figure C.3: A typical message. The todo-agent tells the interface which todo-item is the most
urgent.

157

Figure C.2: OutOfBrain representation of a typical do-item, connected to a day in the diary.

The representation of the user-model
The user-agent maintains a small model of the user and the world around him or her. The first
component of this user-model, the distance-matrix, is depicted in Figure C.4. This particular
example contains four locations. The user is prompted for the distance (travel-time in
minutes) between two locations as soon as it is needed for planning. In this example, all
possible distances are already known to the user-agent.

The second part of the user-model is the type-tree (Figure C.5). It contains all type/subtype
pairs occurring in the diary. The values of 'importance', 'mental-effort', 'physical-effort' and
'fun' are average values derived from all the do-items of the same type and subtype. The
attributes of new items of a known type/subtype are set to the appropriate averages. The user
can then augment them manually, but the averages should approximate the desired values,
especially after long term use.

158

Figure C.4: An example distance-matrix with four locations in it.

The third and final part of the user-model is the average-energy (also known as user-energy).
After using the system for twenty four days, the average-energy could look like the one in
Figure C.6. It consists of two parts. First, the diary-agent checks whether this part of the user-
model is already up-to-date, hence the attribute 'last-date'. If it is not, he proceeds with
analysing the diary day by day, until 'last-date' is equal to yesterday. The values 'total-
importance', 'total-mental-effort', 'total-physical-effort' and 'total-fun' are sums over all the
items analysed so far.

These sums are divided by the number of days that were analysed so far (twenty four),
resulting in the average amount of importance, effort and fun per day. These averages are then
rounded to integer values. Unfortunately, this third part of the user-model was not used in any
of the preferences of the system due to practical reasons. The user-agent was supposed to use
it while choosing a suggestion from the list provided by the diary-agent. The user-agent could
then try to obey the user's energy-threshold when planning todo-items. Another possibility is
to ensure a minimum amount of fun per day (if this can be unified with all the other
preferences).

159

Figure C.5. An example type-free containing the average atfributes for Iwo types and five
subtypes.

Figure C.6. An example of the user-energy part of the user-model. Twenty four days were
analysed.

x

160

	JIJsselmuidendl1.CV
	JIJsselmuidendl2.cv

